

Hersonissos, Crete, Greece 9 - 13 June 2008

35th EUROPEAN PHYSICAL SOCIETY

Physics

Conference on Plasma

10th International Workshop on Fast Ignition of Fusion Targets

PROGRAMME

9

35th EUROPEAN PHYSICAL SOCIETY

Conference on Plasma Physics 10th International Workshop on Fast Ignition of Fusion Targets

Hersonissos, Crete, Greece June 9-13, 2008

PROGRAMME

Organized by:

- Association EURATOM Hellenic Republic
- Institute of Electronic Structure and Laser (I.E.S.L.) FO.R.T.H.

CONTENTS

	Page
Objectives of the Conference	
Scope	3
Topics	
EPS Programme Committee Members	4
The Local Organizing Committee	5
Conference date and location	5
Organisation	5
World Wide Web Site	5
Presentation ID	6
Oral Presentations	6
Poster Presentations	6
Paper abstracts	6
Proceedings	7
Awards	7
Education in Plasmas	
ITER Session	
Women in Physics	
Satellite Meetings	9
Registration	9
Social Programme	
Accompanying persons excursions	
Lunches	
Buses	
Map of the Creta/Terra Maris Hotel	
Plan of Conference Centre	
PROGRAMME	
List of Invited Talks	18
List of Contributed Orals	20
List of Posters	
List of Post Deadline Presentations	
Abstracts of Invited Talks	
Author Index	155

- 2 -

Objectives of the Conference

One of the main objectives of the Conference is to facilitate the presentation and discussion of most recent developments in all areas of plasma physics and controlled fusion physics. The exchange of cross-disciplinary information among various plasma physics related fields is strongly encouraged. Plenary sessions covering the latest developments in plasma science are being held each day. Every day parallel invited talks related to the main topics of the Conference are held covering advanced technical aspects. Among the contributions submitted to the Conference, a number of papers are presented in parallel oral sessions, and the other contributed papers are presented as posters. A fraction of the Conference time during each day, after lunch, is exclusively devoted to poster sessions During the Conference and afterwards the 10th International Workshop on Fast Ignition of Fusion Targets will take place.

Scope

This conference continues the series of **European Physical Society (EPS)** conferences on **Plasma Physics**, encompassing the fields of fusion research, magnetic confinement fusion, beam plasmas, laser-plasma interaction and inertial confinement fusion, dusty and low temperature plasmas, as well as space and astrophysical plasmas and basic plasmas.

TOPICS

- Magnetic Confinement Fusion (MCF)
 - Edge and plasma-wall interactions
 - Turbulence and transport
 - Equilibrium and MHD
 - Operational limits and plasma control
 - Diagnostics
 - Heating and fuelling
 - Concept development and engineering

• Beam Plasmas & Inertial Fusion

- Inertial confinement and high gain
- Hydrodynamics and instabilities
- Ultra-intense laser interaction and fast ignition
- Frontiers in hot dense matter research, pulsed power
- Radiation hydrodynamics, laboratory astrophysics
- Inertial fusion energy drivers and reactors
- Laser and ion beam coupling with plasmas
- Radiation sources harmonics, X-ray lasers, etc.
- Laser and plasma based accelerators

Dusty & Low Temperature Plasmas

- Theory and numerical simulations
- Liquid and crystalline complex(dusty) plasmas

- Nucleation and growth
- o Waves
- Diagnostics
- Plasma Processing and applications
- Dust in fusion
- Basic Plasmas & Space & Astrophysical Plasmas
 - Solar, space and astrophysical plasmas
 - Fundamental plasma physics.
 - Laboratory-based space and astrophysical plasmas

EPS PROGRAMME COMMITTEE MEMBERS

Carlos	Hidalgo	Spain	(Chair PC)
Jo	Lister	Switzerland	(Chair EPS PPD)
Paraskevas	Lalousis	Greece	(Chair LOC)
Vincent	Chan	USA	(APS)
Kazuo A.	Tanaka	Japan	(JSPF)

Magnetic Confinement Fusion

Xavier	Garbet	France
Howard	Wilson	United Kingdom
Paolo	Buratti	Italy
Ralph	Dux	Germany
Alberto	Loarte	EFDA/EU
Fernando	Meo	Denmark
Maria	Puiatti	Italy

Beam Plasmas and Inertial Fusion

Jacquemot	France
Fajardo	Portugal
Lancaster	United Kingdom
Perlado	Spain
Pegoraro	Italy
	Jacquemot Fajardo Lancaster Perlado Pegoraro

Dusty and Low Temperature Plasmas

Mark	Bowden	United Kingdom
Hubertus	Thomas	Germany
Francoise	Massines	France

Basic Plasmas and Space and Astrophysical Plasmas

Fabrice	Doveil	France
Michel	Tagger	France
Nigel	Woolsey	United Kingdom
Luis	Silva	Portugal

THE LOCAL ORGANISING COMMITTEE

Lalousis (chair)
Moustaizis (Scientific Secretary)
Duval (Switzerland)
Grecos
Hizanidis
Vlahos
Vomvoridis

Conference date and location

The Conference is being held on June 9-13 at the Creta Maris Conference Center, Hersonissos, Crete, Greece. The plenary invited talks are scheduled for early mornings from Monday to Friday, and also on Friday afternoon, in the Zeus theatre, in level 1 of the Conference Center. Parallel invited talks and contributed orals are held in four thearte rooms, Zeus, Minos, Danae, and Athina. The 10th International Workshop on Fast Ignition of Fussion Targets, will be held on June 12-13 at the Creta Maris Conference Centre, and will be continued on June 16-18 at the Apollo Room of Creta Maris Hotel.

Organisation

The organisation of the Conference is carried out by the Association EURATOM-Hellenic Republic and the Institute of Electronic Structure and Laser FORTH, Heraklion, Crete, Greece . The Secretary of EPS 2008 is : Mrs. Ritsa Karali FO.R.T.H. – I.E.S.L. P.O. Box 1527, 71110 Heraklion, Crete, GREECE Tel: +30 2810 391300 Fax: +30 2810 391305 Email: <u>eps2008@iesl.forth.gr</u>

World Wide Web Site

Detailed and updated information on the 35th European Physical Society Conference on Plasma Physics is provided on the website: <u>http://eps2008.iesl.forth.gr.</u>

Presentation ID

The presentation ID (e.g. P1.001) reads as follows:

- First character indicates type of presendation

 I Invited talk
 O Oral contribution
 P Poster contribution
 D post deadline paper
- Second number indicates the day of presentation:
 - 1 Monday June 9, 2008
- 2 Tuesday June 10, 208
- 3 Wednesday June 11, 2008 4 Thursday June 12, 2008
- 5 Friday June 13, 2008
- Third number (three digits) indicates the sequence number

Oral presentations

The allotted time for oral presentations is:

- Plenary invited oral: 40 minutes (including 5 minutes for discussion)
- Parallel invited oral: 30 minutes (including 5 minutes for discussion)
- Contributed oral: 20 minutes (including 5 minutes for discussion)

Speakers must keep strictly to the allotted time due to the large number of presentations. To avoid unnecessary delays between talks, all speakers are kindly requested to contact the Chairman five minutes before beginning of the session. Speakers are also requested to copy the file of their presentation at the conference slide Table on registration or at least one day before the oral presentation. Authors' laptop will not be allowed for presentation papers. Speakers with an oral presentation on Monday are requested to copy their presentation on Sunday afternoon. Speakers can also e-mail their file presentation to <u>epstalks@iesl.forth.gr</u> any time before the begging of the Conference.

Poster presentations

All posters are to be presented on level 0 of the Creta Maris Conference Center. Authors of posters are reminded that they should put up their posters before the morning session commences and remove them at the end of the day, 18:00pm. The available poster area is 1.80 (height) x 0.95(width)m.

Paper abstracts

All abstracts are available on the Conference website: <u>http://eps2008.iesl.forth.gr</u> Abstracts of the invited papers are included in this Programme.

Proceedings

All papers will be available on the website after the Conference. Invited papers will be published in a special issue of the Plasma Physics and Controlled Fusion Journal. Contributed orals and posters will be published on CD-ROM, and will be distributed after the Conference.

Awards

Hannes Alfven prize of the European Physical Society for outstanding contributions to plasma physics

Each year, the European Physical Society awards this Prize to one or more persons who have made outstanding contributions to plasma physics in experimental, theoretical or technological areas. This year's Prize winner is Prof. Liu Chen from the University of California, Irvine, USA.

PhD Research Award

The Plasma Physics Division of the European Physical Society created the "European Physical Society Plasma Physics Division PhD Research Award" in 2005. This year (EPS2008) Prize winners are: Louise Willingale (UK), Ivo Classen (NL), and Bredan Dromey (IRL). The Prize winners will be presented on Monday morning.

EPS-PPD Innovation Prize

Research in Plasma Physics has multiple and rich outcomes with direct and/or indirect applications. These applications, which are sometimes inconspicuous and even unknown to the layman, can have significant impacts on daily human life as well as on economic activity. Surprisingly, some of the impacts seem far from the basic Plasma Physics research which gave birth to these key original ideas, but nonetheless represent exemplary innovative strategies. Today, applications of Plasma Physics flourish in vastly different domains, such as radioactive waste transmutation, medicine, isotope separation processes (with fundamental applications to cancer therapy), infection treatment, material processing, torch cutting and welding, flat TV screens, lighting systems, thrusters, as well as countless other medical, industrial and engineering applications. Within the general framework of the relationship between "Science and Society", there is a strong effort on communication between research and public domains in many countries.

The European Physical Society is keenly aware of these important applications. As a dual gesture of stimulation and recognition, a new annual prize has been created by the Plasma Physics Division of the European Physical Society. This prize targets research which has demonstrably led to robust innovative applications or important effects on society. Nominations in any fields are encouraged.

PPCF Poster Prize

The International Journal Plasma Physics and Controlled Fusion (PPCF) is proud to sponsor the PPCF Student Poster Prize at this Conference. Four €150 prizes (one for each of the Topics of the Conference) will be announced on Friday afternoon, during the Closing Session.

Itoh Project Prize in plasma Turbulence

This is the fourth time that Prof. Sanae-I Itoh, in agreement with the Conference organizers, has offered the Itoh Project Prize in Plasma Turbulence to students presenting a poster at the conference. The prize includes the chance to visit Kyushu University, Japan, for one week, including flights and living expenses.

Education in Plasmas

Theme: **European educational networks - what can it bring to plasma physics.** This session will be chaired by N. Lopes Cardozo, and held on Monday 9th from 18.15-19.00. Prof. Lopes Cardozo will give an introduction on the importance of education in attracting and training the next generation of plasma physics researchers, and on the opportunities for European cooperation to create an attractive education environment.

Speakers include Peter DeRegge (SCKSEN Mol, Belgium) on the European Nuclear Educational Network ENEN, Mark Westra (FOM Rijnhuizen, the Netherlands) on the European Fusion Education Network FUSENET, and Michael Geissler (QUB, Ireland) on the web-based Master course in Plasma Physics.

ITER Session

This session will be held on Tuesday 10 June, at 19:20-20:15, chaired by Jo Lister. Dr. Paul Thomas will present his views on "After the ITER Design Review".

Women in Physics

On Thursday, June 12, 2008, the session "Women in Physics" will be held at 18:10-19:45 and chaired by S. Jacquemot.

Satellite meetings:

The following Workshops will take place after the Conference

10th International Workshop on Fast Ignition of Fusion Targets, 12-18 June 2008. For the dates 12-13 June, 2008, it will be held in the Conference Center, and for 16-18 June in the Apollo Room of the Creta Maris Hotel.

EFTSOMP2008 - 11th Workshop on Electric Fields, Turbulence and Self-Organisation in Magnetized Plasmas

This Workshop will take place on 16-17 June, 2008, at the Hotel Albatros, Hersonissos.

Fuelling of Magnetic Confinement Machines, 16-17 June, 2008. This Workshop will be held at the hotel Knossos Royal Village.

Registration

The registration desk opens at the Conference Centre on Sunday 8 June 2008 at 16:00 and closes at 20:00. On Monday morning, opening time is 08:15. Late registration fees are:

EPS Member	€ 530,00
Member of National Physical Society	€ 560,00
Non-EPS Member	€ 590,00
Student (on request by a supervisor)	€ 200,00
Accompanying person	€ 60,00

Access to the Conference centre will be restricted to participants wearing their badge. Registration fee for participants includes the welcome drink, the morning and afternoon refreshments, the Conference reception, the Conference services (Internet connection, etc.), a special Conference issue of Plasma Physics and Controlled Fusion containing the invited papers (if explicitly requested on the registration form), a Conference CD-ROM containing all contributed papers (distributed after the Conference).

Registration fee for accompanying persons includes the welcome drink, and the conference reception.

Registrations and hotel reservations are handled by: Mrs. Maria Leventi Ibis El Greco S.A. Conference Department 10 Meteoron St, 713 07 Heraklion-Crete, GREECE Tel.: + 30 2810 301711 Fax: + 30 2810 301689 E-mail: <u>info@eps2008.gr</u>

Social programme

Sunday June 8, 2008	19:30	Welcome drink	Romantic Bar, Creta Maris Hotel
Monday June 9, 2008	20:30	Conference Reception	Cochlias Restaurant, Creta Maris Hotel
Tuesday June 10, 2008	21:00	Choral Drama	Open-air theatre, Creta Maris Hotel
Wednesday June 11, 2008	14:00	Official excursion	Knossos Palace
Thursday June 12, 2008	20:15	Conference Dinner	Arolithos Village

Accompanying persons excursions

On Monday, before the excursions start, there will be greek coffee and sweets at 09:00 am for all accompanying persons. Meeting point is the Reception of Terra Maris Hotel.

Tour	Date
East Crete	09/06/2008
Spinalonga bbq	10/06/2008
Samaria Gorge	13/06/2008
Lassithi-Elounda & Spinalonga	12/06/2008
Festos-Gortys & Matala	12/06/2008
1-day Cruise to Santorini	11/06/2008
Rethymno-Arkadi & Chania	10/06/2008

Lunches

Creta Maris Restaurant, coupons which are available from the Secretariat desk. Sandwich bar in the Terrace of the Conference Center. List of Restaurants in the near by area is available in the Secretariat desk.

Buses

In the mornings there will be buses from the official Hotels to the Conference Center, and at the end of the day (18:00) there will be buses from the Conference Center to the Hotels. Also during the Conference days there will be a bus from the Conference Center to the Hotels and back to the Conference Center on the following times:

Monday – Tuesday - Thursday - Friday	10:30,	12:30, 14:30
Wednesday	10:30,	12:30

Map of the Creta/Terra Maris Hotels

The Conference will be held at the <u>Creta Maris Conference Center</u> Hersonissos, Crete, Greece.

Conference Centre Level 1 - Zeus Hall

Conference Centre Level 0 Olympus, Minos, Hera, Danae, Europa, Leda, Athena, Artemis & Aphrodite

PROGRAMME

Monday 9 June 2008				
	Room Zeus			
	Chair: J. Lister			
8:30-9:20		Ор	ening	
9:20-10:00	Alfvén Prize: 11.001	: L. Chen		
10:00-10:20	EPS PhD and Innova	tion in Plasma Science	Prizes	
10:20-11:00		Coffe	e Break	
	Chair: A. Boozer			
11:00-11:40	I1.002: G. Tsakiris			
11:40-12:20	I1.003: A. Piel			
12:20-13:30		Lunc	h Break	
13:30-15:30	Poster Session			
15:30-16:00	Coffee break in Poster Session			
	Room Zeus	Room Minos	Room Athina	Room Danae
	Chair: M. Puiatti	Chair : M. Fajardo	Chair : F. Massines	Chair: B. Lembege
16:00-16:30	I1.004	I1.008	I1.012	I1.016
	S. Günter	T. Ceccotti	C. Oehr	D. Gericke
16:30-17:00	I1.005	I1.009	I1.013	I1.017
	S. Brezinsek	D. Jaroszynski	M. Kushner	F. Paganucci
17:00-17:30	I1.006	I1.010	I1.014	Innovation in plasma
	A. Boozer F. Quéré L. Boufendi science:			
				Thesis I
17:30-18:00	I1.007	I1.011	I1.015	Thesis II
	S. Ide	F. Albert	D. Karabourniotis	
10.00				
18:00	Close			
10.15				
18:15	Education in plasmas (Chair: N. Lopes Cardozo)			
20.20	Departies			
20:30		Rec	eption	

Invited Plenary	40 min
Invited	30 min
Oral	20 min

Tuesday 1	0 June 2008			
	Chair: D. Buratti	Roo	m Zeus	
8:30-09:10	I2.018: S. Pinches			
9:10-9:50	12.019: T.C. Killian			
9:50-10:20		Coffe	e Break	
	Room Zeus Chair: R. Dux	Room Minos Chair: D. Batani	Room Athina Chair: H. Thomas	Room Danae Chair: R. Bingham
10:20-10:50	12.020	12.024	12.032	12.034
	B. Dudson	P. Renaudin	W. Goedheer	D.F. Escande
10:50-11:20	12.021	12.025 D. D. J.	02.007	I2.035
	D. MICDONAID	B. RUS	A. Lipaev	A. Schekochinin
			02.008	
11:20-11:50	12.022	12.026	S. Khrapak	12.036
	S. Sakakibara	R. Singleton	02.009	R. Bamford
			V. Tsytovich	
11:50:-12:20	12.023	12.027		12.037
	G. Falchetto	L. Videau	I2.033	M. Marklund
12.20-13.30		Lunc	h Break	
12.20 10.00		Earres	TBreak	
13:30-15:30	Poster Session			
15:30-16:00	Coffee break in Post	er Session		
	Room Zeus	Room Minos	Room Athina	Room Danae
	Chair: F. Meo	Chair: X. Garbet	Chair: S. Atzeni	Chair: H.Kersten
16:00-16:20	02.001	12.028	02.010	12.038
	L.Bertalot	P. Diamond	G. Huser	T. Gans
16:20-16:40	02.002		02.011	12 030
16:40-17:00		12.029		G. Kroesen
10.40-17.00	A.C.C.Sips	F. Alladio	B. Yu Sharkov	
17:00-17:20	O2.004		02.013	02.016
	S.H.Kim	12 020	C. Labaune	B. James
17:20-17:40	02.005	E. Casse	02.014	02.017
17.40-19.00	P.Gohil		I.B. Foldes	J. Donoso
17:40-18:00	V.Pericoli-Ridolfini	12.031	R Ramis	A.B. Ustimenko
		D. Hughes		
18.00				
18:20-20:15	(chair J. Lister) IT	ER session		
10.20 20.13		ER SUSSION		

Wednesda	y 11 June 200	08		
	Room Zeus			
	Chair: H. Wilson			
8:30-9:10	13.040: G. Conway			
9:10-9:50	I3.041: K.H. Spatsch	nek		
9:50-10:20		Coffe	e Break	
	Room Zeus Chair: P. Monier- Garbet	Room Minos Chair: M. Perlado	Room Athena Chair: M. Bowden	Room Danae Chair: N. Woolsey
10:20-10:50	13.042	13.047	13.050	13.053
	O. Gruber	T. Liseikina	J.P. Borra	K. Ronald
10:50-11:20	13.043	13.048	13.051	13.054
	O. Schmitz	R. Fonseca	U. Kortshagen/	Ch. Gregory
			R. Anthony	
11:20-11:50	13.044	13.049	13.052	13.055
	M. Gryaznevich	A. di Piazza	P. Rocca	F. Hansen
11:50-12:10	13.045	03.019	03.022	03.025
	M. Valisa	M. Geissler	A.E. Sorokin	F. Delahaye
12:10-12:30		03.020	O3.023	03.026
		H. Kuroda	B. Layden	A. Frank
12:30-12:50	13.046	03.021	03.024	O3.027
	J. Garcia	S. Kneip	B.J. Lee	L.P. Babich
12:50-14:00		Lunci	h Break	
14:00	Excursion			
	Invited Plenary	40 min		
	Invited	30 min		
	Oral	20 min		

Thursday	12 June 2008				
		Room Zeus			
0.00.0.10	Chair: K. Tanaka	•			
8:30-9:10	14.056 : M. Borghes	I			
9:10-9:50	14.057 : J-P. Boeuf				
9:50-10:20		Coffe	e Break		
	Room Zeus	Room Minos	Room Athena	Room Danae	
	Chair:W. Suttrop	Workshop Chair: K.Lancaster	Chair: J. Winter	Chair: L. DaSilva	
10:20-10:50	14.058	14.060	14.062	14.064	
	J. Rice	C. Stoeckl	K. Bergmann	G. Vatistas	
10:50-11:20	14.059	14.061	14.063	14.065	
	A. Murari	N. Blanchot	S. Ratynskaia	S. Mueller	
11:20-11:40	O4.028	D4.001	O4.046	O4.055	
	M.Muraglia	E. Storm	A.D. Gurchenko	B. Rubinstein	
	-	(post-deadline)		-	
11:40-12:00	04.029	O4.038	04.047	04.056	
10.00 10.00	P.Piovesan	H. Azechi	A.G.Peeters	M. Psimopoulos	
12:00-12:20	04.030 Dh Laubar	04.039	04.048	04.057 S. Dorri	
10.00 10.00	Ph.Lauper	A. Henig		S. Pern	
12:20-13:30	Lunch Break				
13:30-15:30	Poster Session				
15:30-15:50	Coffee break in Poster Session				
	Room Zeus Chair: J. Ongena	Room Minos Worshop Chair: M. Key	Room Athena Chair: R. Wolf	Room Danae Chair: F. Doveil	
16:00-16:20	O4.031	O4.040	04.049	14.066	
	S.Zoletnik	L. Willingale	N.Vianello	R. Trines	
16:20-16:40	04.032	04.041	O4.050		
	S. de Graca	I. Tsohantjis	R.Guirlet		
16:40-17:00	04.033	04.042	04.051	14.067	
47.00.47.00	A.Huber	L. Lancia	Y.Kominis	F. Peano	
17:00-17:20	04.034 C.D.Maddison	U4.U43	04.052 V Vu	04.058	
17.20 17.40			1.AU		
17:20-17:40	M Bocoulot	$O_{\rm V}$ Polomarov	04.053 R E Maltz	04.059 A Dam	
17.40-19.00				A. Kallino	
17.40-18.00	T Kurki-Suonio	T Johzaki	L Garzotti	post deadline	
18:00		C.	lose		
18:10-19:45	Women in Physics	(Chair: S. Jacquemo	t)		
20.15	Conference dinner		-		
20.13	Conference dinner				

Friday 13	June 2008			
		Roor	n Zeus	
8.20.0.10	Chair: P. Norreys			
8.30-9.10	13.000 . WI. TADAK			
9:10-9:50	15.069: P. Pasko			
9:50-10:20		Coffe	ee Break	
10:20	Room Zeus	Room Minos	Room Athena	Room Danae
	Chair: E.Rachlew	Chair: K. Tanaka	Chair: N. Cramer	Chair: N. Vlahos
10:20-10:50	15.070	05.060	15.079	I5.081
	J. Menard	L. Hallo 05.061	A. IVIEV	
10:50-11:20	15.071	P. Koester	15.080	15.082
	F. Tabarés		V. Nosenko	H. Takabe
		05.062		
11:20-11:50	15.072	P. Velarde	05.063	05.066
	V. Udintsev	15 077	H. Totsuji	A.Y. Pankin
11.50 12.20	15.072	A. Robinson	05.064	05.067
11:50-12:20	V Andrew		C. M. Ticos	M.E.Dieckmann
	T. Andrew	15.078		
		J. Honrubia	05.065	05.068
10.00.10.00		1	A. Fruchtman	N. Leprovost
12:20-13:30		LUNC	п вгеак	
13:30-15:30	Poster Session			
15:30-16:00	Coffee break in Poste	er Session		
	Chair: S. Jacquemo	Roor	n Zeus	
16:00-16:40	15.074: F. Moreno-Ir	nsertis		
16.40-17.20	15 075 · S Krashenir	nikov		
10.40 17.20				
17:20-18:00	I5.076: A. Becoulet			
18:00-18:30		С	lose	

I. PI.	40 min	
I. par.	30 min	
Or.	20 min	
Workshop / BPIF		

LIST OF INVITED TALKS

I1.001	L. Chen	Alfven Waves: A Journey between Space and Fusion Plasmas
I1.002	G. Tsakiris	From relativistic laser-plasma interactions to intense attosecond pulses
I1.003	A. Piel	Complex plasmas: forces and dynamical behaviour
I1.004	S. Guenter	Three dimensional effects in tokamaks
I1.005	S. Brezinsek	Material erosion and migration studies in JET and implications for ITER
I1.006	A. Boozer	Stellarators and the path from ITER to DEMO
I1.007	S. Ide	JT-60U advanced tokamak research towards JT-60SA
I1.008	T. Ceccotti	First results on ions acceleration in an ultra-short, ultra high contrast 50 TW Laser Regime
I1.009	D. Jaroszynski	Radiation sources based on laser-plasma accelerators: current status and challenges
I1.010	F. Quere	Novel radiation sources using plasma mirrors
I1.011	F. Albert	Full characterization of a laser-produced keV X-ray betatron source and applications
I1.012	C. Oehr	Plasma deposition of ultrathin films for biomedical use
I1.013	M. Kushner	Modelling plasma modification on surfaces at low and high pressure. Achieving high control of reactants.
I1.014	L. Boufendi	Particle growth and detection in low temperature plasmas
I1.015	D. Karabourniotis	Diagnostics of dense dispersive plasmas from line reversal.
I1.016	D. Gericke	Temperature Equilibration in Dense Strongly Coupled Plasmas
I1.017	F. Paganucci	MHD instabilities in Magneto-Plasma-Dynamic Thrusters
I2.018	S. Pinches	The Physics of Fast Ion Driven Instabilities in Fusion Plasmas
I2.019	T. Killian	Watching Ions Dance Near Absolute Zero
12.020	B. Dudson	Experiments and simulation of edge turbulence and filaments in MAST
I2.021	D. McDonald	JET confinement studies and their scaling to high βN scenarios
12.022	S. Sakakibara	Study of Reactor-Relevant High-Beta Regime in the Large Helical Device
12.023	G. Falchetto	The European Turbulence Code Benchmarking Effort: Turbulence driven by Thermal Gradients in Magnetically Confined Plasmas
I2.024	P. Renaudin	Investigating atomic properties of warm dense matter produced by laser
12.025	B. Rus	Warm Dense Matter Generation by soft X-ray laser heating of thin foils
12.026	R. Singleton	An exact treatment of charged particle stopping in a plasma or The Coulomb logarithm revisited
I2.027	L. Videau	Overview of on-going LIL experiments
12.028	P. Diamond	Anti-friction, Homogenization and Angular Momentum Transport in Tokamaks, Planets and the Solar Tachocline
12.029	F. Alladio	Rotating twisted flux tubes buoyancy: comparison between the convective region of the Sun and the edge of a tokamak plasma
12.030	F. Casse	Vertical angular momentum transport in astrophysical turbulent MHD accretion disks and the formation of large-scale collimated jets
I2.031	D. Hughes	Turbulent Transport and Coherence in MHD
I2.032	W. Goedheer	Simulation of dust voids in complex plasmas
12.033	O. Petrov	Dusty plasmas under effect of external forces: basic phenomena and applications
I2.034	D. Escande	When can Fokker-Planck equation describe anomalous or chaotic particle transport?
I2.035	A. Schekochihin	Kinetic phase-space turbulence in space and laboratory Plasmas
12.036	R. Bamford	Star Trek plasma shields: Measurements and Modelling of a diamagnetic cavity
I2.037	M. Marklund	Vaccum and plasma QED nonlinearities
I2.038	T. Gans	Phase resolved optical emission spectroscopy: Multi-frequency discharges and atmospheric pressure plasmas

12.039	G. Kroesen	Electrical Breakdown: Experiments and Modeling
13.040	G. Conway	Turbulence measurements in fusion plasmas
I3.041	K.H. Spatschek	Aspects of stochastic transport in laboratory and astrophysical plasmas
13.042	O. Gruber	Compatibility of ITER scenarios with an all-W wall
I3.043	O. Schmitz	Three dimensional transport analysis for ELM control experiments in ITER similar shape plasmas at low collisionality in DIII-D
13.044	M. Gryaznevich	Beta Limit in JET
13.045	M. Valisa	Physics issues in the new high current regimes on RFX-mod.
13.046	J. Garcia	Integrated modelling of ITER steady-state scenarios
13.047	T. Liseykina	Radiation Pressure Acceleration by ultraintense laser pulses
13.048	R. Fonseca	One-to-one direct modelling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations
I3.049	A. Di Piazza	Quantum vacuum effects in strong laser beams
I3.050	J.P. Borra	Charging of aerosols and nucleation in atmospheric pressure electrical discharges
I3.051	U. Kortshagen	Plasma synthesis of silicon quantum dots for printed electronics and photovoltonics
13.052	P. Roca	Low temperature plasma synthesis of silicon nanocrystals: the way for high deposition rate and efficient polymorphous and microcrystalline solar cells
13.053	K. Ronald	Laboratory Investigations of Auroral Cyclotron Emission Processes
13.054	C. Gregory	Astrophysical jet experiments
13.055	F. Hansen	Experiments on interstellar cloud evolution following strong shock passage
I4.056	M. Borghesi	Laser driven proton acceleration: source optimization and perspectives for application
I4.057	JP. Boeuf	Hall Effect Thrusters for Satellite Propulsion
I4.058	J. Rice	Spontaneous rotation in alcator C-mod plasmas
I4.059	A. Murari	Innovative Diagnostics for ITER Physics addressed in JET
I4.060	C. Stoeckl	Fast ignition target design and experimental concept validation on OMEGA
I4.061	N. Blanchot	Overview of PETAL, the multi-Petawatt project on the LIL facility
I4.062	K. Bergmann	Present status of pinch plasmas for EUV and Soft X-ray Radiation
I4.063	S. Ratynskaia	In-situ dust detection in fusion devices
I4.064	G. Vatistas	The Dynamic Similarity Between Polygonal Satellite Vortices and Electron Columns in a Malberg-Penning Trap
I4.065	S. Mueller	Studies of blob formation, propagation and transport mechanisms in basic experimental plasmas (TORPEX and CSDX)
I4.066	R. Trines	The magnetopause is really a transport barrier like in tokamaks
I4.067	F. Peano	Expansion of nanoplasmas in ultraintense laser-matter interactions
15.068	M. Tabak	Fast ignition: original concept and new developments
15.069	V. Pasko	Lighting-related transient luminous events at high altitude in the Earth's atmosphere
15.070	J. Menard	The response of tokamak plasmas to 3D magnetic field perturbations
15.071	F. Tabares	Plasma performance and confinement in the TJ-II stellarator with lithium-coated walls
15.072	V. Udintsev	Global Plasma Oscillations in ITBs
15.073	Y. Andrew	Access to H-mode on JET and implications for ITER
15.074	F. Moreno-Insertis	Magnetized plasma eruptions in the solar atmosphere
15.075	S. Krasheninnikov	Recent progress in understanding the behavior of dust in fusion devices
15.076	A. Becoulet	Technology and science of steady state operation in magnetically confined plasmas
15.077	A. Robinson	Magnetic collimation of fast electrons using structured targets
15.078	J. Honrubia	Electron transport in imploded fast ignition targets
15.079	A. Ivlev	New phenomena in liquid complex plasmas
15.080	V. Nosenko	Monolayer complex plasma experiments

15.081	V. Tikhonchuk	Laboratory Modeling of supersonic radiative jets propagation in plasmas and their scaling to astrophysical conditions
15.082	H. Takabe	High-Mach Number Collsionless Shock and Photo-ionized Non-LTE Plasmas for Laboratory Astrophysics with Intense Lasers

LIST OF CONTRIBUTED ORALS

- O2.001 L. Bertalot, A. Costley, C. Walker, M. Sasao, A. Krasilnikov The integrated way to high accuracy neutron measurements in ITER
- O2.002 E. Wolfrum, B. Langer, R. Fischer Determination of the radial electric field from passive He II emission.
- O2.003 A.C.C. Sips, P. Lomas, O. Gruber, G.M.D. Hogeweij, J. Hobrik, L. Horton, F. Imbeaux, M. Mattei, F. Köchl, X. Litaudon, I. Nunes, V. Parail, A. Portone, G. Saibene, R. Sartori, G. Tardini *Current rise studies at ASDEX Upgrade and JET in preparation for ITER*
- O2.004 S.H. Kim, J-F. Artaud, V. Basiuk, V. Dokouka, R.R. Khayrutdinov, J.B. Lister, V.E. Lukash *Full tokamak simulation of ITER Scenario 2 using the combined DINA-CH and CRONOS Simulator*
- O2.005 P. Gohil, J.S. deGrassie, G.R. McKee, C.C. Petty, D.J. Schlossberg H-mode Power Threshold for EC and NBI Heated Discharges in DIII-D and their Dependence on the Input Torque
- O2.006 V. Pericoli-Ridolfini, Yu. Baranov, M. Beurskens, M. Brix, P. Buratti, G. Calabrò, R. Castaldo, R. Cesario, C.D. Challis, R. DeAngelis, P.C. deVries, J. Ferron, E. Giovannozzi, C. Giroud, M. Gryaznevich, T.C. Hender, D. Howell, E. Joffrin, T. Luce, P. Lomas, J. Mailloux, D.C. McDonald, J. Menard, M. Murakami, F. Orsitto, F. Rimini, G. Saibene, S. Sharapov, P. Smeulders, I. Voitsekovitch, O. Zimmermann *High beta_N experiments at JET in ITER-like plasmas in support of the ITER steady state scenario*
- O2.007 A.M. Lipaev, H.M. Thomas, G.E. Morfill, V.E. Fortov, A.V. Ivlev, V.I. Molotkov, T. Hagl, H. Rothermel, S.A. Khrapak, R.K. Suetterlin, M. Rubin-Zuzic, S.K. Krikalev, P.V. Vinogradov, A.I. Ivanov, V.I. Tokarev *Complex Plasma Laboratory PK-3 Plus on the International Space Station and First Experiments*
- O2.008 Sergey Khrapak Electric Potential Around a Small Object in Plasmas Effect of Plasma Absorption and Ion-Neutral Collisions
- O2.009 V.N.Tsytovich,G.E.Morfill Attraction of dust clusters and formation of super-crystals
- *O2.010* G. Huser, C. Courtois, M.-C. Monteil *Wall and laser spot motion in cylindrical hohlraums*
- O2.011 R. Florido, J.M. Gil, P. Martel, M.A. Mendoza, E. Mínguez, R. Rodríguez, J.G. Rubiano, D. Suárez Developments in the calculation of radiative properties of ICF plasmas at DENIM
- O2.012 B.Yu. Sharkov, N.N. Alexeev, D.G. Koshkarev, P.R. Zenkevich Heavy ion accelerator-accumulator ITEP-TWAC for experiments on fusion and high energy density in matter physics.
- O2.013 C. Labaune, S. Depierreux, D. T. Michel, M. Grech, P. Nicolaï, C. Stenz, V. T. Tikhonchuk, S. Weber, C. Riconda, N. G. Borisenko, W. Nazarov, S. Hüller, D. Pesme, J. Limpouch, P. Loiseau, G. Riazuelo, M. Casanova, C. Meyer, P. Di-Nicola, R. Wrobel, E. Alozy, P. Romary, G. Thiell, G. Soullié, C. Reverdin, B. Villette Smoothing of laser beam intensity fluctuations in low density foam plasmas with the LIL laser

O2.014	I.B. Földes, S. Szatmári Multiple-beam Fast Ignition with KrF Laser
O2.015	R. Ramis Three-dimensional simulations of cylindrical targets irradiated by heavy-ion beams
O2.016	B.W. James, L. Couedel, A.A. Samarian, L. Boufendi Discharge diagnostics during particle growth in a complex plasma
O2.017	J. M. Donoso Integral propagator solvers for plasma kinetic equations
O2.018	O.A. Lavrichshev, V.E. Messerle, E.F. Osadchaya, A.B. Ustimenko Plasma Gasification of Coal and Petrocoke
O3.019	M. Geissler, S. Rykovanov, J. Schreiber, M. Zepf, J. Meyer-ter-Vehn, G. Tsakiris Surface Harmonic Generation With High Power Laser Pulses
O3.020	H. Kuroda, M. Suzuki, M. Baba, R. A. Ganeev, T. Ozaki Highly Efficient and Brilliant High Harmonic Coherent Soft X-Ray Laser Source from Laser-Ablated Solid Target Plasma Towards a Water Window Region
O3.021	S. Kneip, S.R. Nagel, C. Bellei, N. Bourgeois, A. E. Dangor, A. Gopal, R. Heathcote, S. P. D. Mangles, J. R. Marquès, A. Maksimchuk, P.M. Nilson, K. Ta Phuoc, S. Reed, M. Tzoufras, F.S. Tsung, L. Willingale, W. B. Mori, A. Rousse, K. Krushelnick, Z. Najmudin <i>Petawatt Laser Synchrotron Source</i>
O3.022	A.E. Sorokin Selective ion capture instability for ion-particle interactions in weakly ionized gas
O3.023	B. Layden, L. Couëdel, A. Samarian, M. Mikikian, S.V. Vladimirov, L. Boufendi Afterglow dynamics of a dust cloud
O3.024	B.J. Lee, K.S. Oh, S.W Choi, M.P. Hong, D.C. Kim, G.H. Kim, Y.C. Park, S.J. Yoo Manufacturing Photovoltaic Cell with the Low Cost and High Efficiency Using Hyperthermal Neutral Beam
O3.025	F. Delahaye The ODALISC Project Accurate atomic data for complex radiation-hydrodynamics simulations
O3.026	Anna Frank, Sergey Bugrov, Vladimir Markov Experimental observations of the out-of-plane quadrupole magnetic fields resulting from Hall current generation in current sheets
O3.027	L.P. Babich, Å.N. Donsko, A.Y. Kudryavtsev, M.L. Kudryavtseva, I.M. Kutsyk Simulation of ascending atmospheric discharge and its emissions in optical and gamma – ranges
O4.028	M. Muraglia, O. Agullo, S. Benkadda, P. Beyer, X. Garbet Nonlinear Dynamics of Magnetic Islands Imbedded in Edge Tokamak Plasma Microturbulence
O4.029	P. Piovesan, M. Zuin, D. Bonfiglio, A. Canton, L. Carraro, R. Cavazzana, L. Marrelli, E. Martines, M. Spolaore, M. Valisa, N. Vianello, P. Zanca Magnetic order improvement through high current and MHD feedback control in RFX-mod

- O4.030 Ph. Lauber, S. Guenter, M. Bruedgam, M. Garcia Munoz, S. da Graca, N. Hicks, V. Igochine, M. Maraschek *Fast Particle Driven Modes at ASDEX-Upgrade*
- O4.031 S. Zoletnik, D. Dunai, A. R. Field, A. Kirk ELM pre-cursor structures observed using Beam Emmission Spectroscoy in MAST
- O4.032 S.daGraca, G.D.Conway, M.Maraschek, A.Silva, E.Wolfrum, R.Fisher, L.Cupido, F.Serra, M.E.Manso, ASDEX Upgrade Team Studies of edge MHD modes in H-mode discharges in ASDEX Upgrade using reflectometry
- O4.033 A. Huber, R. A. Pitts, A. Loarte, V. Philipps, P. Andrew, S. Brezinsek, P. Coad, J.C. Fuchs, W. Fundamenski, S. Jachmich, A. Korotkov, G.F. Matthews, K. McCormick, Ph. Mertens, J. Rapp, G. Sergienko, M. Stamp *Plasma radiation during transient events in JET*
- O4.034 G.P. Maddison, A.E. Hubbard, J.W. Hughes, I.M. Nunes, M.N.A. Beurskens, S.K. Erents, R. Pasqualotto, E. Giovannozzi, A. Alfier, M.A.H. Kempenaars, B. Alper, S.D. Pinches, J.A. Snipes, B. LaBombard Dimensionless pedestal identity plasmas on JET and Alcator C-Mod
- O4.035 M. Becoulet, G. Huysmans, E. Nardon, M. Schaffer, A. Garofalo, A. Cole Non-linear MHD Rotating Plasma Response to Resonant Magnetic Perturbations.
- O4.036 T. Kurki-Suonio, O. Asunta, V. Hynönen, T. Johnson, T. Koskela, J. Lönnroth, V. Parail, M. Roccella, G. Saibene, A. Salmi, S. Sipilä Fast Particle Losses in ITER
- O4.038 H. Azechi, K. Mima, Y. Fujimoto, S. Fujioka, H. Homma, M. Isobe, A. Iwamoto, T. Jitsuno, T. Johzaki, R. Kodama, M. Koga, K. Kondo, J. Kawanaka, T. Mito, N. Miyanaga, O. Motojima, M. Murakami, H. Nagatomo, K. Nagai, M. Nakai, T. Nakamura, Y. Nakao, K. Nishihara, H. Nishimura, T. Norimatsu, T. Ozaki, H. Sakagami, K. Shigemori, H. Shiraga, A. Sunahara, T. Taguchi, K.A. Tanaka, K. Tsubakimoto Update of FIREX Project
- O4.039 A. Henig, J. Schreiber, D. Kiefer, S. Karsch, Zs. Major, R. Hörlein, J. Osterhoff, M. Geissler, S. Rykovanov, J. Szerypo, S. Stanglmaier, F. Krausz, D. Habs *Enhanced ion acceleration from mass-limited targets irradiated by high-intensity laser pulses*
- O4.040 L.Willingale, S.R.Nagel, A.G.R.Thomas, C.Bellei, R.J.Clarke, A.E.Dangor, R.Heathcote, C.Joshi, M.C.Kaluza, C.Kamperides, S.Kneip, K.Krushenick, N.Lopes, S.P.D.Mangles, K.Marsh, W.Nazarov, P.M.Nilson, Z.Najmudin *Laser plasma interactions in the relativistic transparent regime*
- O4.041 I. Tsohantjis, S. D. Moustaizis, I. Ploumistakis Pair creation from vacuum in the presence of ultra-intense laser beams
- O4.042 Livia Lancia, Jean-Raphaël Marquès, Julien Fuchs, Caterina Riconda, Ana Mancic, Patrizio Antici, Patrick Audebert, Stefan Weber, Vladimir T. Tikhonchuk, Stefan Hueller, Jean-Claude Adam, Anne Héron *Experimental investigation of short light pulse amplification using stimulated Brillouin backscattering*
- O4.043 J. Badziak, S. Jablonski, P. Parys, M. Rosinski, J. Wolowski, A. Szydlowski, P. Antici, J. Fuchs, A. Mancic *Studies on proton beam generation for fast ignition-related applications*
- O4.044 O. V. Polomarov, I. D. Kaganovich, G. Shvets The Collective Energy Loss Of The Relativistic Electron Beam Propagating Through Background Plasma
- O4.045 T. Johzaki, Y. Sentoku, H. Sakagami, H. Nagatomo, K. Mima, Y. Nakao *Core Heating Properties in FIREX-I ~Influence of cone tip*

- O4.046 A.D. Gurchenko, E.Z. Gusakov, A.B. Altukhov, A.Yu. Stepanov, S.I. Lashkul, D.V. Kouprienko, L.A. Esipov Evolution of turbulence exponential wave number spectra during transition to improved confinement triggered by current ramp up at FT-2 tokamak
- O4.047 A.G. Peeters, C. Angioni, D. Strintzi Toroidal momentum pinch velocity and turbulent equipartition
- O4.048 M.A. Pedrosa, C. Silva, C. Hidalgo, D. Carralero, B.A. Carreras, R.O. Orozco Long-distance correlations of fluctuations and sheared flows during transitions to improved confinement regimes in the TJ-II stellarator
- O4.049 N. Vianello, M. Agostini, A. Alfier, A. Canton, R. Cavazzana, A. Fassina, R. Lorenzini, E. Martines, P. Scarin, G. Serianni, G. Spizzo, M. Spolaore, M. Zuin Turbulence,', transport and their relation with magnetic boundary in the RFX-mod device
- O4.050 R. Guirlet, T. Parisot, D. Villegas, C. Bourdelle, X. Garbet, F. Imbeaux, D. Pacella Comparison of anomalous transport of light and heavy impurities in sawtooth-free Tore Supra plasmas
- O4.051 Y. Kominis, K. Hizanidis, A.K. Ram Quasilinear Theory for Momentum and Spatial Diffusion due to Radio Frequency Waves in Non-Axisymmetric Toroidal Plasmas
- O4.052 Y. Xu, R. R. Weynants, M. Van Schoor, M. Vergote, S. Jachmich, M. W. Jakubowski, M. Mitri, D. Reiser, O. Schmitz, K. H. Finken, M. Lehnen, B. Unterberg, D. Reiter, U. Samm, the TEXTOR team *Impact of the Resonant Magnetic Perturbations RMP on Edge Turbulence and Turbulent Transport on TEXTOR*
- O4.053 R.E. Waltz, G.M. Staebler Gyrokinetic Theory and Simulation of Angular Momentum Transport
- O4.054 L.Garzotti, K.B.Axon, L.Baylor, J.Dowling, C.Gurl, F.Köchl, G.P.Maddison, H.Nehme, B.Pégourié, M.Price, R.Scannel, M.Valovic, M.Walsh. *Observation and analysis of pellet material grad B drift on MAST.*
- O4.055 B. Rubinstein, J. Citrin, R. Doron, R. Arad, Y. Maron, A. Filler Highly Resolved Spectroscopic Observations of Magnetic Field Penetration into an almost Collisionless Plasma
- O4.056 M. Psimopoulos, S. Tanriverdi, G. Kasotakis, M. Tatarakis Cross field thermal transport in magnetized plasmas
- O4.057 S. Perri, E. Yordanova, V. Carbone, L. Sorriso-Valvo, M. Andrè Small-scale anisotropy in the heliosphere
- O4.058 M. V. Goldman, D. L. Newman Weak Electron Phase Space Holes for Electron Distributions with a Tail
- O4.059 A.K. Ram, B. Dasgupta *Chaotic Magnetic Fields due to Asymmetric Current Configurations -- Modeling Cross-Field Particle Diffusion in Cosmic Rays*
- O5.060 L. Hallo, V. Dréan, M. OLazabal-Loumé, X. Ribeyre, G. Schurtz Hydrodynamic symmetry safety factor of HiPER's targets
- O5.061 P. Koester, K. Akli, A. Antonicci, D. Batani, S. Baton, R.G. Evans, E. Foerster, A. Giulietti, D. Giulietti, L.A. Gizzi, J.S. Green, T. Kaempfer, M. Koenig, L. Labate, K.L. Lancaster, T. Levato, A. Luebcke, A. Morace, P. Norreys, F. Perez, I. Uschmann, J. Waugh, N. Woolsey, F. Zamponi
 Experimental investigation of fast electron transport through Kalpha imaging and spectroscopy in relativistic lasersolid interactions

O5.062	P. Velarde, M. González, C.García, E.Oliva Simulation of the shell-cone interaction in fast ignition targets
O5.063	H. Totsuji Critical Phenomena in Strongly Coupled Fine Particle Plamas
O5.064	C. M. Ticos, Zhehui Wang, G. A. Wurden Plasma jet acceleration of a dust cloud to hypervelocities
O5.065	A. Fruchtman Plasma source as a thruster
O5.066	A.Y. Pankin, Z. Mikic, S. Titov, J. Goodman, D.A. Uzdensky, D.D. Schnack <i>Mahnetohydrodynamic Modeling of the Accretion Disk Corona</i>
O5.067	M.E.Dieckmann, P.K.Shukla, L.O.C.Drury The formation of a relativistic planar plasma shock
O5.068	N. Leprovost, E. Kim Theory of turbulent transport and dynamos in astrophysical plasmas

LIST OF POSTERS

P1.001	A.Y. Pankin, G. Bateman, C.S. Chang, F. Halpern, A.H. Kritz, S. Ku, D. McCune, G.Y. Park, T. Rafiq
	Effects of Anomalous Transport on Kinetic H-mode Pedestal Evolution
P1.002	Carrere M, Cartry G, Schiesko L, Layet JM,
	Negative ion measurements H- and D- produced on a HOPG sample in a helicon reactor.
P1.003	M.B. Kadomtsev, M.G. Levashova, V.S. Lisitsa
	2D universal atomic kinetics for hydrogen-like systems in plasmas
P1.004	J. Rosato, F.B. Rosmej, R. Stamm, M.B. Kadomtsev, M.G. Levashova, V.S. Lisitsa
	Effects of transport and turbulence on lithium radiation in edge tokamak plasmas
P1.005	J.W. Hughes, A.E. Hubbard, B. LaBombard, B. Lipschultz, K. Marr, R. McDermott, M.L. Reinke, J.L. Terry, S. Wolfe
	H-mode optimization using magnetic topology variation in Alcator C-Mod
P1.006	M. Kocan, J.P. Gunn, JY. Pascal, G. Bonhomme, C. Fenzi, E. Gauthier, T. Gerbaud, O. Meyer, JL. Segui
	Measurements of ion temperature in the SOL of Tore Supra
P1.007	N. Ben Ayed, G. F. Counsell, B. Dudson, A. Kirk, R. G. L. Vann, H. R. Wilson, MAST team.
	Edge turbulence studies of inter-ELM periods on MAST
P1.008	O. Buzhinskij, E. Azizov, V. Otroschenko, V. Rodionova, N. Rodionov, S. Sotnikov, S.Tugarinov, A. Trapeznikov, I.Shipuk
	Renewed First Wall Coating In The T-11M Òokamak Plasma Shot.

- 24 -

P1.009	 R. Kaita, H. Kugel, M.G. Bell, R. Bell, J. Boedo, C. Bush, D. Gates, T. Gray, J. Kallman, S.Kaye, B. LeBlanc, R, Majeski, R. Maingi, D. Mansfield, J. Menard, D.Mueller, M. Ono, S. Paul, R. Raman, A.L. Roquemore, P.W. Ross, S. Sabbagh, H. Schneider, C.H. Skinner, V. Soukhanovskii, T.Stevenson, J. Timberlake, J-W. Ahn, J.P. Allain, W.R. Wampler, L. Zakharov
	Improvement in Plasma Performance with Lithium Coatings in NSTX
P1.010	V.I.Golish, E.I.Karpenko, V.G.Lukiachshenko, V.E.Messerle, V.Zh.Ushanov, A.B.Ustimenko
	Long Life Arc Plasmatron
P1.011	A. Gupta, M. Tokar
	A model for type I ELMs
P1.012	A. Punjabi, H. Ali
	Construction of the equilibrium generating function and an area-preserving map for the DIII-D shot 115467 at 3000 ms
P1.013	A.S. Kukushkin, H.D. Pacher, V. Komarov, M. Merola, V. Kotov, D. Reiter, G.W. Pacher
	Physics Analysis of Divertor Modifications in ITER
P1.014	A.Vesel, A.Drenik, I.Poberaj, M.Balat – Pichelin, M.Passarelli, M.Mozetic
	Oxidation of graphite with neutral oxygen atoms at elevated temperature
P1.015	B. Bazylev, Y. Igitkhanov, G. Janeschitz
	Simulation of Hot-Spot Formation at ITER Vessel Surface during Multiple Transient Events
P1.016	A.B. Kukushkin, P.V. Minashin, V.S. Neverov
	Similarity of Spatial Distributions of Net Electron Cyclotron Power Losses in Fusion Plasmas
P1.017	A. Casati, C. Bourdelle, X. Garbet, F. Imbeaux J. Candy, F. Clairet, G. Dif-Pradalier, G. Falchetto, T. Gerbaud, V. Grandgirard , P. Hennequin, R. Sabot, Y. Sarazin, L. Vermare, R. Waltz
	Towards an improved first principle based transport model
P1.018	A. Kendl, B.D. Scott
	Gyrofluid Simulations of the Ideal Ballooning ELM Scenario
P1.019	B.F. McMillan, S. Jolliet, T.M. Tran, L. Villard, A. Bottino, P. Angelino
	Avalanche-like bursts in global gyrokinetic simulations
P1.020	C. Morize, P. Hennequin, G. Ciraolo, Ph. Ghendrih, X. Garbet, Y. Sarazin, P. Tamain
	Eulerian and Lagrangian statistical analysis of SOL turbulent transport
P1.021	C. Silva, H. Figueiredo, I. Nedzelskij, H. Fernandes, P. Duarte, C. Hidalgo, M.A. Pedrosa, G. van Oost, A. Melnikov, C. Gutierrez-Tapia
	Structure of the ISTTOK edge plasma fluctuations
P1.022	E. Trier, P. Hennequin, LG Eriksson, C. Fenzi, C. Bourdelle, G. Falchetto, X. Garbet, T. Aniel, F. Clairet, F. Imbeaux, R. Sabot
	Direct measurement of the radial electric field in a tokamak with magnetic field ripple
P1.023	Eun-jin Kim, J. Douglas, A. Thyagaraja, A.P. Newton
	Transport barriers in magnetohydrodynamic turbulence
P1.024	F. A. Marcus, I. L. Caldas, Z. O. Guimaraes-Filho
	Transport Control Through Modified Electric Field

P1.025	F. Castejón, D. López-Bruna, T. Estrada
	Island healing and CERC formation in the TJ-II stellarator
P1.026	F. Lepreti, V. Carbone, M. Spolaore, V. Antoni
	Yaglom relation for electrostatic turbulence in the RFX reversed field pinch
P1.027	G. Fuhr, S. Benkadda, P. Beyer, X. Garbet, I. Sandberg, H. Isliker
	Self-organization of electromagnetic turbulence in plasma edge
P1.028	G.Kamberov, L.Popova, P.Marinov, V.Hristov
	Self-Organization of Plasma Transport
P1.029	H. Isliker
	Anomalous particle and heat transport modeled by the combined random walk in position and momentum space
P1.030	H.M.Smith,E.Verwichte
	Hot tail runaway electron generation in tokamak disruptions
P1.031	I. Calvo, R. Sanchez, B.A. Carreras, B.Ph. Van Milligen
	Fractional generalization of Fick's law. Derivation through Continuous-Time Random Walks
P1.032	I. Pusztai, T. Fülöp, P. Helander
	On the quasilinear transport fluxes driven by microinstabilities in tokamaks
P1.033	J. Anderson, E. Kim
	Non-perturbative models of intermittency in ITG drift wave turbulence with zonal flows
P1.034	F. Meo, H. Bindslev, S. B. Korsholm, F. Leuterer, F. Leipold, P. K. Michelsen, S. K. Nielsen, M. Salewski, J. Stober, D. Wagner, P. Woskov, ASDEX Upgrade team
	Commissioning and First Results of the Fast Ion Collective Thomson Scattering Diagnostic on ASDEX Upgrade
P1.035	J.L.Velasco, F.Castejón, A.Tarancón
	Non-diffusive effects in ion collisional transport in TJ-II
P1.036	K. Hallatschek
	Diamagnetic GAM Drive Mechanism
P1.037	K. Rypdal, T. Zivkovic
	Low-dimensional chaotic convection dynamics in the Helimak configuration
P1.038	M.J.Pueschel, L.Laborde, F.Jenko
	GENE simulations on the beta dependence of tokamak core turbulence
P1.039	M.Onofri, F.Malara, L.Primavera, P.Veltri
	Anisotropic turbulence in nonlinear magnetic reconnection
P1.040	P. Morel, R. Klein, E. Gravier, N. Besse, P. Bertrand
	Water bag modelling of a multi-species plasma
P1.041	R. Klein, P.Morel, N.Besse, E.Gravier, P.Bertrand
	ITG and collisional drift-waves in cylindrical geometry with a gyrowaterbag model
P1.042	R. Sanchez, J.N. Leboeuf, D.E. Newman, V. Decyk, B.A. Carreras
	Understanding non-diffusive transport in gyrokinetic simulations of electrostatic turbulence in tokamaks

P1.043	S.Marsen, M.Endler, M.Otte, F.Wagner
	Overview of Turbulence Studies in the WEGA Stellarator
P1.044	T. Gerbaud, C. Bourdelle, L. Vermare, P. Hennequin, F. Imbeaux, T. Aniel, J. Candy, A. Casati, F. Clairet, G. Falchetto, C. Fenzi-Bonizec, S. Heuraux, R. Waltz
	Collisionality scaling of confinement and turbulence in Tore Supra
P1.045	V.P. Pastukhov, N.V. Chudin
	Turbulence reduction and cross-field transport control by means of non-central plasma heating in tokamaks
P1.046	A. Ajendouz, Th. Pierre, D. Saifaoui, K.Qotb A. Dezairi, A. Rouak ,M.El Moudden
	Contribution to the experimental and theoretical study of instabilities in a toroidal confined plasma configuration
P1.047	A.D. Beklemishev
	Correlation of Parallel and Transverse Transport in Langmuir Turbulence
P1.048	A. Eriksson, J. Weiland, Y. Liu, L. Garzotti
	Resonance effects on turbulent particle pinches
P1.049	A. Fukuyama, M. Miki
	Dynamic Transport Simulation in Helical Plasmas
P1.050	A.I. Smolyakov, S.I. Krasheninnikov
	Generation of meso-scale structures by drift-wave interactions
P1.051	A. Biancalani, L. Chen, F. Pegoraro, F. Zonca
	Continuum spectrum of shear Alfvén waves in the presence of a magnetic island
P1.052	F.M. Poli, S.E. Sharapov
	Study of the spectral characteristics and the nonlinear evolution of ELMs on JET using a wavelet analysis
P1.053	I.V. Khalzov, V.I. Ilgisonis, A.I. Smolyakov
	Coupling of Waves with Positive and Negative Energy as a Universal Mechanism for MHD Instabilities of Flowing Media
P1.054	K. Toi, F. Watanabe, T. Tokuzawa, T. Ido, A. Shimizu, K. Ida, S. Ohdachi, S. Sakakibara, S. Yamamoto, H. Funaba, S. Inagaki, M. Isobe, S. Morita, K. Nagaoka, K. Narihara, Y. Narushima, M. Osakabe, K. Tanaka, K.Y. Watanabe
	Nonlinear Interaction between Alfven Eigenmode and Geodesic Acoustic Mode Excited by Energetic Ions in the Large Helical Device
P1.055	M. García-Muñoz, HU. Fahrbach, S. Günter, V. Igochine, MJ. Mantsinen, M. Maraschek, P. Martin, SD. Pinches, P. Piovesan, K. Sassenberg, H. Zohm
	Observation and modelling of fast ion losses due to high frequency MHD pertrubations in the ASDEX Upgrade tokamak
P1.056	M. Isobe, K. Toi, Y. Yoshimura, A. Shimizu, Y. Todo, K. Ida, C. Suzuki, T. Akiyama, T. Minami, K. Nagaoka, S. Nishimura, K. Matsuoka, S. Okamura
	Energetic-particle modes driven by suprathermal electrons in second harmonic ECRH plasmas of the Compact Helical System
P1.057	M.K. Lilley, S.E. Sharapov, H.M. Smith, R. Akers
	Modelling of beam-driven high frequency compressional Alfvén eigenmodes in MAST

P1.058	M.Lennholm, L.G.Eriksson, F.Turco, F.Bouquey, C.Darbos, R.Dumont, G.Giruzzi, R.Lambert, R.Magne, D.Molina, P.Moreau, F.Rimini, J.L. Segui, S.Song, E.Traisnel
	Destabilisation Of Fast Ion Stabilised Sawteeth Using Electron Cyclotron Current Drive
P1.059	S.A. Sabbagh, J.M. Bialek, R.E. Bell, J.W. Berkery, O.N.Katsuro-Hopkins, J.E. Menard, R.Betti, D.A.Gates, B.Hu, B.P. LeBlanc, J.Manickam, K.Tritz
	Global MHD Mode Stabilization Research on NSTX
P1.060	V.D. Pustovitov
	Tokamak plasma response to asymmetric magnetic perturbations
P1.061	V.I. Tereshin, P.Ya. Burchenko, S.P. Gubarev, G.G. Lesnyakov, A.V. Lozin, S.M. Maznichenko, V.E. Moiseenko, F.I. Ozhereliev, G.P. Opaleva, V.K. Pashnev, Yu.F. Sergeev, A.N. Shapoval, O.M. Shvets, V.S. Taran, S.A.Tsybenko, E.D. Volkov, M.I. Zolototrubova
	First Results of Uragan-2M Torsatron
P1.062	V. Igochine, O.Dumbrajs, H. Zohm
	Sawtooth Crash as a Result of Quasiperiodic Transition to Chaos in ASDEX Upgrade
P1.063	A.M.Popov
	Excitation of Neoclassical Tearing Modes During Pellet Injection in the Presence of Error Field in ITER
P1.064	W. Zwingmann
	Three-dimensional magnetic field calculation for a localised current distribution in unbounded space
P1.065	H. Thomsen, P.J. Carvalho, S. Gori, U.v. Toussaint, A. Weller, R. Coelho, H. Fernandes
	Application of Neural Networks for Fast Tomographic Inversion on Wendelstein 7-X
P1.066	D. Chandra, O. Agullo, S. Benkadda, X. Garbet, A. Sen
	GAMs like dynamics due to nonlinear interaction of multiple NTMs in tokamaks
P1.067	D. Testa, P. Blanchard, A. Fasoli, A. Klein, T. Panis, J. A. Snipes, JET-EFDA contributors
	Measurement of the Damping Rate of High-n Toroidal Alfven Eigenmodes in JET
P1.068	N.V. Ivanov, A.N. Chudnovskiy, A.M. Kakurin, I.I. Orlovskiy
	Analysis of T-10 Data on Magnetic Island Dynamics Using the TEAR Code
P1.069	P. Buratti, C.D. Challis, M. Gryaznevich, T.C. Hender, E. Joffrin, T. Luce, P. Smeulders, JET-EFDA contributors
	Radial analysis of beta-limiting modes in JET
P1.070	A. Hojabri, F. Hajakbari, M. Ghoranneviss, M.K. Salem
	Energy Limit of Runaway Electrons in the Iran Tokamak 1 IR-T1
P1.071	M. Cecconello, L. Frassinetti, M. W. M. Khan, K. E. J. Olofsson, P. R. Brunsell
	Resistive tearing modes dynamics with plasma control in a reversed field pinch
P1.072	S. Yu. Medvedev, A.A. Ivanov, A.A. Martynov, Yu. Yu. Poshekhonov, R. Behn, Y.R. Martin, A. Pochelon, O. Sauter, L. Villard
	Beta limits and Edge Stability for Negative Triangularity Plasma in TCV Tokamak
P1.073	D. Keeling, R. Akers, C.D. Challis, G. Cunningham, H. Meyer
	Tailoring the q-profile on MAST for scenario optimisation
P1.074	J.A. Snipes, M. Greenwald, A. Hubbard, J. W. Hughes, B. LaBombard, J. E. Rice

	Plasma Current Dependence of the H-mode Threshold Low Density Limit on Alcator C-Mod
P1.075	J.K. Anderson, B.E. Chapman, F. Bonomo, K. Caspary, D. Craig, D.J. Den Hartog, F. Ebrahimi, D.A. Ennis, G. Fiksel, P. Franz, R.M. Magee, R. O'Connell, S.C. Prager, J.A. Reusch, J.S. Sarff, H.D. Stephens, M.D. Wyman
	High Confinement, High beta Plasmas in the MST RFP
P1.076	J. Miyazawa, R. Sakamoto, H. Yamada, M. Kobayashi, S. Masuzaki, T. Morisaki, N. Ohyabu, A. Komori, O. Motojima, the LHD experimental group
	Fusion triple product and the density limit of high-density internal diffusion barrier plasmas in LHD
P1.077	M. Sempf, P. Merkel, E. Strumberger, S. Günter
	Robust control of resistive wall modes using pseudospectra, with application to ITER
P1.078	Q. Yu, S. Günter
	Neoclassical tearing modes its locking by error fields and stabilization by RF current
P1.079	S.A. Bozhenkov, M. Lehnen, K.H. Finken, M.W. Jakubowski, R. Jaspers, R.C. Wolf, S. Abdulaev, M. Kantor, G. van Wassenhove, D. Reiter
	Runaway electrons after massive gas injections in TEXTOR importance of the gas mixing and of the resonant magnetic perturbations
P1.080	S.V. Lebedev, L.G. Askinazi, F.V. Chernyshev, V.E. Golant, M.A. Irzak, V.A. Kornev, S.V. Krikunov, A.D. Melnik, D.V. Razumenko, V.V. Rozhdestvensky, A.A. Rushkevich, A.I. Smirnov, A.S. Tukachinsky, M.I. Vid'junas, N.A. Zhubr
	Low Density LH Transition Triggered by Counter-NBI in the TUMAN-3M Tokamak
P1.081	E. Westerhof, J.W. Oosterbeek, M. de Baar, M.A. van den Berg, W.A. Bongers, A. Bürger, M.F. Graswinckel, R. Heidinger, B.A. Hennen, J.A. Hoekzema, S.B. Korsholm, O.G. Kruijt, B. Lamers, F. Leipold, D.J. Thoen, B.C.E. Vaessen, P.M. Wortman, TEXTOR-Team
	TheTEXTOR line-of-sight ECE system for feedback controlled ECRH power deposition
P1.082	E.Z. Gusakov, N.V. Kosolapova, S. Heuraux
	Turbulence wave number spectra reconstruction using radial correlation reflectometry.
P1.083	I.V. Moskalenko, N.A. Molodtsov, D.A. Shcheglov, D.A. Shuvaev
	Laser-Induced Fluorescence Method for Measurements of Helium and Impurities in ITER Divertor Plasmas. Advantages and Problems of LIF System.
P1.084	K. W. Hill, M. L. Bitter, S. Scott, A. Ince-Cushman, M. Reinke, J. E. Rice, P. Beiersdorfer, M-F Gu, S. G. Lee, Ch. Broennimann, E. F. Eikenberry
	Ion-Temperature and Rotation-Velocity Profile Measurements from a Spatially Resolving X-Ray Crystal Spectrometer on the Alcator C-Mod Tokamak
P1.085	M. Yoshikawa, Y. Miyata, T. Matsumoto, M. Noto, M. Mizuguchi, Y. Yoneda, S. Negishi, N. Imai, K. Kimura, Y. Shima, S. Goshu, M. Nakada, Y. Oono, A. Itakura, H. Hojo, T. Imai
	Fluctuation measurements during the formation of potential confinement in GAMMA 10
P1.086	P. Khorshid, M. Razavi, M. Molaii
	Measurment of Plasma Displacements during resonance helical field application in IR-T1 Tokamak
P1.087	V. Yavorskij, V. Goloborod'ko, LG. Eriksson, V. Kiptily, K. Schoepf, S.E. Sharapov
	Results of predictive Fokker-Planck modeling of fusion alpha particles in ITER
P1.088	Y. Podoba,I. Bondarenko, A. Chmyga, G. Deshko, S. Khrebtov, A. Komarov, A. Kozachok, L. Krupnik, A. Melnikov, M. Otte, S. Perfilov, M. Schubert, F. Wagner, A. Zhezhera

	HIBP on WEGA Calibration and Measurements
P1.089	T. Kudyakov, K.H. Finken, M. Jakubowski, M. Lehnen, Y. Xu, S. Bozhenkov, O. Willi
	Measurements of the runaway electron spectrum in the TEXTOR tokamak
P1.090	H.K. Park, C.W. Domier, I. Classen, A.J.H. Donné, R. Jaspers, G.J. Kramer, N.C. Luhmann, Jr., M. Kwon, E.J. Valeo, M.J. Van de Pol
	2-D Microwave Imaging Projects on Tokamak Plasmas
P1.091	F.S. Zaitsev, D.P. Kostomarov, E.P. Suchkov
	Existence of substantially different solutions in an inverse problem of plasma equilibrium reconstruction
P1.092	A.A. Lukianitsa, F.S. Zaitsev, S.V. Nosov
	Processing of magnetic diagnostics data using Hidden Markov Models
P1.093	F.S. Zaitsev, A. Gondhalekar, T.J. Johnson, V.G. Kiptily, A.A. Korotkov, S.E. Sharapov, JET EFDA contributors
	Simulations to elucidate suprathermal deuterium ion tail observed in He3 minority ICRF heated JET plasmas
P1.094	D. Jimenez-Rey, B. Zurro, J. Guasp, M. Liniers, C. Fuentes, G. Garcia, L. Rodríguez-Barquero, A.Baciero, A.Fernández, A. Cappa, R. Jiménez-Gómez, M.García-Munoz
	Fast Ion Losses Behaviour in the TJ-II stellarator
P1.095	L. Barrera, E.de la Luna, F. Castejon, L. Figini, JET-EFDA contributors
	Comparison of the inboard and outboard Type I ELM dynamics in JET
P1.096	M. Schubert, A.Popov, S.Heuraux, E.Gusakov
	Reconstruction of the turbulence density fluctuation profile from reflectometry phase fluctuation measurements revisited.
P1.097	A.K. Ram, J. Decker
	Relativistic Effects in Electron Cyclotron Resonance Heating and Current Drive
P1.098	A.V. Anikeev, P.A. Bagryansky, A.S. Donin, A.A. Ivanov, A.V. Kireenko, K.Yu. Kirillov, M.S. Korzhavina, A.A. Lizunov, V.V. Maximov, S.V.Murakhtin, E.I. Pinzhenin, V.V. Prikhodko, V.Ya. Savkin, E.I. Soldatkina, A.L. Solomakhin
	Steady-state confinement of hot ion plasma in the gas dynamic trap
P1.099	J. Decker, A. K. Ram, Y. Peysson, S. Coda, L. Curchod, A. Pochelon
	Electron Bernstein Waves Heating and Current Drive in Axisymmetric Toroidal Plasmas
P1.100	JaeChun Seol
	Nonlinear interactions between cold electrons and the microwaves at cyclotron resonances
P1.101	P. T. Lang, B. Alper, D. Frigione, K. Gál, G. Kocsis, K. Lackner, T. Loarer, M. Maraschek, G. Saibene, T. Szepesi, R. Wenninger, H. Zohm, ASDEX Upgrade Team, JET-EFDA contributors
	Pellet investigations related to ITER ELM pacing and particle fuelling
P1.102	V.Vdovin
	Electron Cyclotron Plasma Heating second harmonic modelling with full wave code in middle tokamaks and ITER
P1.103	W. Kraus, M. Berger, HD. Falter, U. Fantz, P. Franzen, M. Fröschle, B. Heinemann, Ch. Martens, P. McNeely, R. Riedl, E. Speth, A. Stäbler
	Development of RF driven H-/D- sources for ITER

P1.104	G. Van Wassenhove, P. Dumortier, A. Lyssoivan, A. Messiaen, M. Vervier, O. Schmitz, B. Unterberg, TEXTOR team
	ICRF antenna coupling in different heating scenarios and impact of phasing during experiments on TEXTOR
P1.105	S.Morita
	Systematic study of impurity pellet injection with Z 6-42 for improvement of plasma performance in LHD
P1.106	V. Petrzilka, M. Goniche, F. Clairet, G. Corrigan, P. Belo, J. Ongena
	On SOL Variations as a Function of LH Power
P1.107	J.M.García-Regaña, F.Castejón, A.Cappa, M.Tereshchenko
	Linear Estimation of Electron Bernstein Current Drive in inhomogeneous plasmas
P1.108	P.M. Ryan, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, C.K. Phillips, G. Taylor, E.J. Valeo, J.B. Wilgen, J.R. Wilson, J.C. Wright, H. Yuh
	Improved HHFW Heating And Current Drive At Long Wavelengths On NSTX
P1.109	A.R. Polevoi, A.S. Kukushkin, W. Houlberg, S. Maruyama, K. Gal, P. Lang, B. Pegourie, H. Nehme, M. Sugihara, A. Loarte, D. Campbell, V.A.Chuyanov
	Assessment of Pumping Requirements in ITER for Pellet Fuelling and ELM Pace Making
P1.110	V.B. Minaev, B.B. Ayushin, A.G. Barsukov, F.V. Chernyshev, V.K. Gusev, G.S. Kurskiev, M.I. Mironov, A.A. Panasenkov, M.I. Patrov, Yu.V. Petrov, V.A. Rozhansky, N.V. Sakharov, I.Yu. Senichenkov, G.N. Tilinin, S.Yu. Tolstyakov, V.I. Varfolomeev, E.G. Zhilin
	Progress in the Neutral Beam Heating Experiment on the Globus-M Spherical Tokamak
P1.112	A.V.Burdakov, A.A.Ivanov, E.P.Kruglyakov
	Axially symmetric magnetic mirror traps. Recent progress in plasma confinement and heating.
P1.113	B. Coppi, F. Bombarda, P.Detragiache, A. Airoldi, G. Cenacchi
	Novel Developments for Fusion Research and the Ignitor Approach
P1.114	S.Ryzhkov
	Modeling and engineering applications for wEAKLY turbulent plasma
P1.115	L.P. Babich, A.M. Buyko, S.F. Garanin, A.V. Ivanovskiy, A.I. Kuzyayev, V.I. Mamyshev, V.N. Mokhov, E.S. Pavlovskiy, A.A. Petrukhin, V.Sh. Shaidulin, V.K. Chernyshev, V.B. Yakubov
	Experimental research of implosion of plasma liners of the magnetocascade system for thermonuclear target heating
P1.116	A.M. Buyko, B.E. Grinevich, S.F. Garanin, Yu.N. Gorbachev, A.V. Ivanovskiy, A.I. Kuzyayev, V.I. Mamyshev, V.N. Mokhov, A.A. Petrukhin, V.K. Chernyshev, V.B. Yakubov
	Experiments with solid liners for further compression of heated plasma in MAGO system
P1.117	A. Kasperczuk, T. Pisarczyk, M. Kalal, J. Ullschmied, E. Krousky, K. Masek, M. Pfeifer, K. Rohlena, J. Skala, P. Velarde, M. Gonzalez, C. Gonzalez, E. Oliva, P. Pisarczyk
	Direct and indirect methods of the plasma jet generation
P1.118	T. Pisarczyk, A. Kasperczuk, M. Kalal, J. Ullschmied, E. Krousky, K. Masek, M. Pfeifer, K. Rohlena, J. Skala, P. Pisarczyk
	Characteristics of the plasma jet generated from a joint of materials with different atomic number
P1.119	N. Naumova, C. Labaune, T Schlegel, V.T. Tikhonchuk, G. Mourou, I.V. Sokolov

Hole boring through overdense plasmas using multiple ultrahigh intensity laser pulses P1.120 V.S. Belyaev, A.P. Matafonov, V.I. Vinogradov Relativistic Magneto-Active Laser Plasmas P1.121 Cheng Wang, Haiyang Lu, Guanglong Chen, Guoquan Ni, Jiansheng Liu, Ruxin Li, Zhizhan Xu Nuclear Fusion in Deuterated Methane-Cluster Jets Irradiated by Intense Femtosecond Laser Pulses P1 122 G.C. Androulakis, M. Bakarezos E.L. Clark, J. Chatzakis, A. Gopal, S.M. Hassan, J. Kaliakatsos, S. Minardi, C. Petridis, M. Psimopoulos, A. Skoulakis, E. Tzianaki, N.A. Papadogiannis, M. Tatarakis A new Centre for Plasma Physics and Lasers P1.123 I. Ploumistakis, I. Tsohantjis, S. D. Moustaizis New approaches on Laser Vacuum Breakdown for Pair Creation P1.124 V. Stancalie, V. Pais Parametrisation of 2pns 1P0 resonance structures in C4 P1.125 V.I. Zaitsev, V.G. Novikov, I. Yu. Vichev, G.S. Volkov, A.D. Solomyannaya Study of the x-ray spectrum of the heavy-ion z-pinch. P1.126 O. Renner, L. Juha, J. Krasa, E. Krousky, C. Granja, V. Linhart, A.A. Andrejev Search for Low-Energy Nuclear Transitions in LPP P1.127 J. Wolowski, J. Badziak, A. Czarnecka, P. Parys, M.Rosinski, R.Turan, S.Yerci The laser-produced plasma as a modern repetitive ion source for technological applications P1.128 R.M.G.M. Trines, R. Bingham, R.A. Cairns, L.O. Silva, P.A. Norreys Numerical studies of Raman amplification of laser pulses in plasma P1.129 A.V.Glushkov, O.Yu.Khetselius QED theory of radiation emission and absorption lines for atoms and ions of plasma in a strong electromagnetic field P1.130 L. O. Silva, B. Brandão, J. E. Santos, R. Bingham Transverse modulational instability of intense white light in plasmas P1.131 B. Dromey, S.G. Rykovanov, D. Adams, R. Hörlein, Y. Nomura, P.S. Foster, S. Kar, K. Markey, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf Bright coherent XUV harmonic emission from intense laser solid interactions P1.132 D. S. Whittaker, M. Fajardo, Ph. Zeitoun, G. Faivre, J. Gautier, A. S. Morlens, E. Oliva, S. Sebban, K. Cassou, D. Ros, P. Velarde, H. Merdji, J.P. Caumes, M. Kos, B. Rus, T. Mocek et al, A. L'huillier, O. Guillbaud Reduced Extreme Ultra-Violet Pulse Durations Resulting from High-Harmonic Seeding of Suitably Tailored Plasma Gain Media. P1.133 Hui-Chun Wu, Jürgen Meyer-ter-Vehn Phase-sensitive Terahertz Plasma Emission from Gas Targets Irradiated by Few-cycle Intense Laser Pulses P1.134 M. Zepf, B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S. G. Rykovanov, D. C. Carroll, P.S Foster, M. Geissler, S. Kar, K. Markey, P. McKenna, D. Neely, G.D. Tsakiris Near Diffraction Limited XUV Harmonics

P1.135 S. Bastiani-Ceccotti, P. Renaudin, F. Dorchies, M. Harmand, E. Brambrink, M. Geissel, M. Koenig, O. Peyrusse,
	P. Audebert
	Temporal and spectral behavior of sub-picosecond laser-created X-ray sources
P1.136	Sepehri Javan N.
	Free electron laser with relativistic electron bunches and a longitudinal electrostatic wiggler
P1.137	B. Ersfeld, D.A. Jaroszynski
	Thermal effects on Raman amplification in plasma
P1.138	E. Abreu, M. Fajardo
	Plasma density periodic modulation generated by a two-lasers interference pattern
P1.139	E. Abreu, N. Timneanu, J. Hajdu
	Proton acceleration in an x-ray Free Electron Laser
P1.140	E. Brambrink, B. Brabrel, A. Benuzzi, T.Bohley, T. Endo, C. Gregory, T. Kimura, M. Rabec le Gloahec, H. G. Wei, M. Koenig
	Short pulse laser driven hard x-ray sources for radiography of shocked matter
P1.141	E.Oliva, P.Zeitoun, P.Velarde, K.Cassou, M.Fajardo, C.García-Fernández
	Hydrodynamic and ray-tracing simulation of Seeded Soft X-Ray Laser amplifying stages.
P1.142	I.F. Shaikhislamov, V.M. Antonov, E.L. Boyarintsev, V.G. Posukh, A.V. Melekhov, Yu.P. Zakharov, A.G. Ponomarenko
	Charge-Exchange of Laser-Produced Ions on a Pulsed Gas Jet
P1.143	M. Tamas, P. Vrba, M. Vrbova
	Influence of wall material on soft X-ray radiation from discharge in nitrogen filled capillary
P1.144	S. Cipiccia, A. Reitsma, D. Jaroszynski
	X-ray production techniques using laser-plasma accelerators
P1.145	S.G. Rykovanov, M. Geissler, Y. Nomura, R. Hoerlein, J. Schreiber, J. Meyer-ter-Vehn, G.D. Tsakiris
	Properties of the harmonic emission from the interaction of intense laser pulses with ovedense plasma
P1.146	J.Meyer-ter-Vehn, HC.Wu
	Dense Relativistic Electron Layers from Nanometer Foils surfing on Few-cycle multi-TW Laser Pulses
P1.147	M. P. Anania, S. B. van der Geer, M. J. de Loos, A. J. W. Reitsma, D. A. Jaroszynski
	Beam transport of ultra-short electron bunches
P1.148	M.Tanimoto,K.Koyama,E.Miura,S.Kato,N.Saito,M.Adachi
	The trapped particle sideband instability observed in laser-plasma accelerator experiments
P1.149	N.Lemos, J. Berardo, R. Onofrei, N. Lopes, G. Figueira, F. Fiuza, L.O.Silva, J.G.Gallacher, R.C.Issac, D. A. Jaroszynski, J. M. Dias
	Transverse dynamics of a plasma column created by field ionization
P1.150	X. Yang, A. Lyachev, B. Ersfeld, E. Brunetti, G. Vieux, D.A. Jaroszynski
	Amplification of short laser pulses based on Raman backscattering in plasma
P1.151	L.P. Babich, I.M. Beketov, Î.M. Burenkov, V.K. Chernyshev, Yu.N. Dolin, P.V. Duday, V.I. Dudin, V.À. Ivanov, A.V. Ivanovsky, G.V. Karpov, V.P. Korchagin, A.I. Kraev, V.B. Kudel'kin, I.M. Markevtsev, O.D. Mikhailov, A.N. Moiseenko, I.V. Morozov, S.V. Pak, S.M. Polyushko, V.N. Romaev, A.N. Skobelev, V.A. Tokarev, V.Sh.

	Shaidullin, V.I. Shpagin., À.À. Volkov, G.I. Volkov, T.I. Volkova, À.À. Zabiralov
	Experiments on prolong plasma confinement with the fusion chamber MAGO
P1.152	M.V. Petrenko, I.V. Kuznetsova, Z.A. Stepanova, G.K. Tumakaev, S.V. Bobashev
	Effective EUV radiation source based on laser-produced plasma in supersonic xenon jet and ways of its optimization.
P1.153	A.Berbri, M.Tribeche
	Weakly nonlinear ion acoustic double layers in a dusty plasma with non thermal electrons
P1.154	R. Kompaneets, A.V. Ivlev, U. Konopka, V. Tsytovich, S.V. Vladimirov, G. Morfill
	Screening of a charged dust particle in the rf plasma-wall transition layer
P1.155	B.Klumov, S.V.Vladimirov, G.E.Morfill
	Molecular dynamics simulations of a mesoscopic system of charged dust particles
P1.156	B. P. Pandey, A. Samarian, S.V. Vladimirov
	Dust motion in flowing magnetized plasma
P1.157	D.J. Kedziora, S.V. Vladimirov, A.A. Samarian
	Influence of the nature of charge fluctuations on dust cluster oscillation spectrum
P1.158	A.M. Ignatov, S.A. Maiorov, P.P.J.M. Schram, S.A.Trigger
	Modelling of Dust Particle Charging in the Upper Atmosphere
P1.159	E.M.Apfelbaum
	The reconstruction of the effective interaction potential in dusty plasma
P1.160	L.G. D'yachkov, M.M. Vasiliev, S.N. Antipov, O.F. Petrov, V.E. Fortov
	Rotation inversion of dust plasma structures in magnetic fields in a dc discharge
P1.161	M.M. Vasiliev, L.G. D'yachkov, S.N. Antipov, O.F. Petrov, V.E. Fortov
	Dusty Plasma under Magnetic Field Action in DC Glow Discharges
P1.162	F. Fendrych, P. Repa, L. Peksa, J. Poltierova Vejpravova, A. Lancok, K. Seemann
	UHV Hollow Cathode Plasma Jet System for Nanostructured Magnetic Films Deposition
P1.163	B.P. Pandey, S.V. Vladimirov, A. Samarian
	Nonlinear waves in collisional dusty plasma
P1.164	A. Drenik, M. Mozeti, A. Vesel, D. Babi, M. Balat - Pichelin
	Influence of a substrate holder on a neutral hydrogen atom density in a plasma reactor
P1.165	E. Scime, Z.Harvey, S.Chakraborty-Thakur, A. Hansen, R. A. Hardin, W.S. Przybysz
	Comparison of Gridded Energy Analyzer and Laser Induced Fluorescence Measurements of a Two-Component Ion Distribution
P1.166	A.Andrei, C. Lungu, G. Oncioiu, C. Diaconu
	Plasma processing for improvement of structural materials properties
P1.167	C. Stancu, A. C. Galca, G. Dinescu
	Removal of Carbon Residuals from Narrow Spaces by RF Discharges
P1.168	A. Anghel, I. Mustata

	MgF2-Co magneto-resistance granular thin films prepared by thermo-ionic vacuum arc technique
P1.169	A. M. Lungu, C. P. Lungu, A. Anghel, C. Porosnicu, I. Mustata, C. M. Ticos
	Plasma processing of nanostructured Ni/Al/Co Films
P1.170	C. Bellecci, P. Gaudio, S. Martellucci, M. Richetta, D. Toscano, I. Vulkay
	Gas jet characterization of a laser plasma system emitting in EUV
P1.171	C. M. Ticos, C. P. Lungu, C. Surdu-Bob, I. Mustata, V. Zaroschi, A. Anghel, C. Porosnicu
	Deposition of magnetic materials on dust particles levitated in vacuum arc plasmas
P1.172	C. P. Lungu, C. C. Surdubob
	Vacuum arc carbon-metal co-deposition for antifriction coatings
P1.173	C. P. Lungu, A. M. Lungu
	Comparison of the low friction graphite-metal coatings prepared by thermionic vacuum arc and plasma spray methods
P1.174	D. Mascali, L. Celona, G. Ciavola, S. Gammino, F. Maimone, L. Allegra, N. Gambino, R. Miracoli
	Microwave absorption in dense and overdense plasmas generated in a Plasma Reactor for Environmental Applications
P1.175	C.Bellecci, P.Gaudio, I.Lupelli, A.Malizia, M.T.Porfiri , M.Richetta
	Dust mobilization and transport measures in the STARDUST facility
P1.176	F. Pegoraro, M. Faganello, F. Califano
	Fast magnetic reconnection in collisionless plasmas with velocity shear
P1.177	B. Coppi
	Vertical Transport and Thermo-rotational Instability in Astrophysical Plasma Disks
P1.178	S.A.Koryagin
	Electron-ion collisions in low-temperature plasma embedded in quantizing magnetic field
P1.179	Z. Osmanov
	Efficiency of the curvature drift instability in AGN wids
P1.180	A. Biancalani, F. Pegoraro
	Cherenkov emission of electron cyclotron waves by a magnetized satellite orbiting the ionosphere
P1.181	Konstantin V. Khishchenko
	Equations of state for metals at high temperatures and pressures
P1.182	M. Mehdipoor
	Effects of positron density and temperature on ion acoustic solitary waves in magnetized electron-positron-ion plasmas
P1.183	N. Sternberg, C. Sataline, V. Godyak
	Influence of Ramsauer effect on bounded plasmas in magnetic fields
P1.184	A. Fasoli, A. Diallo, I. Furno, D. Iraji, B. Labit, G. Plyushchev, P. Ricci, C. Theiler, S. Müller, M. Podestà, F.M. Poli
	Fluctuations, turbulence and related transport in the TORPEX simple magnetized toroidal plasma

P1.185	A.L. Khomkin, A.S. Shumikhin
	Equation of state and conductivity of aluminum dense vapor plasma
P1.186	A. Lejeune, L. Cherigier-Kovacic, F. Doveil
	Study of hydrogen ion species in a multicusp ion source
P1.187	A.V.Gavrikov, V.E.Fortov, O.F.Petrov, N.A.Vorona, M.N.Vasiliev
	Investigation of electron beam charging of dust particles
P1.188	B. Teaca, V. Remacle, C. Lalescu, C. Toniolo, B. Weyssow
	Test Particle Transport in Turbulent Electromagnetic Fields
P1.190	M. E. Koepke, S. M. Finnegan, D. J. Knudsen, S. Vincena
	Space-Plasma Campaign on stationary inertial Alfvén waves
P1.191	A. Fredriksen, H.S. Byhring, C. Charles, L.N. Mishra, R. Boswell
	Double layer beam formation in the Njord device and its dependence on magnetic field configuration.
P1.192	A.G. Ponomarenko, V.M. Antonov, E.L. Boyarintsev, A.V. Melekhov, V.G. Posukh, I.F. Shaikhislamov, K.V. Vchivkov, Yu.P. Zakharov
	Laboratory Simulation of Extreme Magnetosphere Compression under Impact of a Giant Coronal Mass Ejection
P2.001	B. Kurzan, A. Scarabosio, M. Gemisic-Adamov
	Large scale inter-ELM fluctuations in the pedestal and the density limit in ASDEX Upgrade
P2.002	C. P. Lungu,
	Plasma-wall erosion rate evaluation by markertile
P2.003	E.M. Hollmann, J.A. Boedo, T.E. Evans, D.A. Humphreys, A. James, T.C. Jernigan, R.A. Moyer, P.B. Parks, D.L. Rudakov, E.J. Strait, M.A. van Zeeland, J.C. Wesley, W.P. West, W. Wu, J.H. Yu
	Measurements of Injected Impurity Assimilation During Fast Shutdown Initiated by Multiple Gas Valves in DIII- D
P2.004	E. M. Hollmann, P. S. Krstic, R. P. Doerner, D. Nishijima, A. Yu. Pigarov
	Measurement and modelling of hydrogen molecule ro-vibrational accommodation on graphite
P2.005	F. Bint-e-Munir, S. Kuhn, D.D. Tskhakaya sr.
	Comprehensive study of a magnetised plasma-wall transition - MPWT
P2.006	F. L. Waelbroeck
	Formation of the velocity shear layer in the edge of a diverted tokamak
P2.007	G.Pautasso, D.Coster, X.Bonnin
	Modelling of massive gas injection with SOLPS
P2.008	H. Ali, A. Punjabi
	Robustness of Second Order Magnetic Barriers at Noble Irrationals in the ASDEX UG Tokamak
P2.009	H.G. Frerichs, O. Schmitz, D. Harting, D. Reiter, B. Unterberg, Y. Feng, T.E. Evans, M.E. Fenstermache, I. Joseph, R.A. Moyer
	3D numerical analysis of magnetic topology and edge transport for TEXTOR-DED and DIII-D limiter configurations with resonant magnetic perturbations
P2.010	H.W. Müller, A. Herrmann, B. Kurzan, R. Pugno, V. Rohde, M. Tsalas, M. Wischmeier, E. Wolfrum

	From carbon to tungsten divertor plasmas in ASDEX Upgrade
P2.011	J. Butikova, A. Sarakovskis, I. Tale
	Laser-induced plasma spectroscopy of plasma facing materials
P2.012	J.C. Fuchs, T. Eich, L. Giannone, A. Herrmann
	Radiation Distribution in the Full Tungsten ASDEX Upgrade
P2.013	J. Canik, R. Maingi, E.A. Unterberg, Y. Feng, D. Monticello, F. Sardei, M.C. Zarnstorff
	Application of EMC3-EIRENE to NCSX
P2.014	J. Cheng, L.W. Yan, W.Y. Hong, Adi Liu, J. Qian, K.J. Zhao, J.Q. Dong, H.L. Zhao
	Turbulence Intermittency in the Scrape-off Layer of HL-2A Tokamak
P2.015	J. P. Gunn, V. Fuchs
	Quasineutral kinetic simulation of the scrape-off layer
P2.016	A. Krämer-Flecken, S. Soldatov, D. Reiser, M. Jakubowski
	Effect of Resonant Magnetic Perturbations on Zonal Flows and ambient Turbulence
P2.017	A. Kuritsyn, A.F. Almagri, D.L. Brower, W.X. Ding, F. Ebrahimi, G. Fiksel, M. Miller, V.V. Mirnov, S.C. Prager, J.S. Sarff
	Momentum Transport during Spontaneous Reconnection Events and Edge Biasing in the MST Reversed Field Pinch
P2.018	A.R.Field, R.J.Akers, N.J.Conway, M-D.Hua, S.D.Pinches, M.Wisse
	Momentum transport in MAST spherical tokamak plasmas
P2.019	B. Nold, M. Ramisch, U. Stroth, H.W. Müller, V. Rohde
	Comparison of Dimensionally Similar Turbulence in TJ-K and ASDEX Upgrade
P2.020	B.P. Duval, A. Bortolon, A. Karpushov, A. Pochelon, O. Sauter, G. Turri
	Effect of Sawteeth on the Spontaneous TCV Plasma Rotation
P2.021	B.Ph. van Milligen, T. Kalhoff, M.A. Pedrosa, C. Hidalgo
	Bicoherence and confinement transitions in TJ-II
P2.022	CB. Kim
	Response of MHD plasma to a parity-nonconserving driving noise
P2.023	C. Crabtree, B. Coppi
	Non-fluid Micro-Reconnecting Modes and Experimental Observations
P2.024	C.F. Maggi, R.J. Groebner, A.W. Leonard, C.C. Petty, C. Konz, L.D. Horton, A.C.C. Sips
	The role of the H-mode pedestal on global confinement in hybrid scenarios in DIII-D and ASDEX Upgrade
P2.025	C. Ionita, R. Schrittwieser, C. Silva, P. Balan, H. Figueiredo, V. Naulin, J. Juul Rasmussen
	Turbulence measurements with cold and emissive probes in ISTTOK
P2.026	C. Mazzotta, M. Romanelli, O. Tudisco, L. Carraro, S. Cirant, L. Gabellieri, G. Granucci, M. Marinucci, M. Mattioli, S. Nowak, V. Pericoli, M.E. Puiatti, A. Romano, L.Lauro Taroni, FTU team
	Particle Density behavior of electron heated plasmas in FTU
P2.027	C. Riccardi, R. Barni, M. Arosio, M. Fontanesi

	Plasma blob motion in the simple magnetised toroidal plasma of the Thorello device
P2.028	D. Carralero, E. de la Cal, J.L. de Pablos, J.A. Alonso, M.A. Pedrosa, C. Hidalgo
	Fast Imaging Experiments of Edge Transport in the TJ-II Stellarator
P2.029	D.E. Newman, Debasmita Samaddar, R. Sanchez, B.A. Carreras
	Impact of sheared flows on the fractional transport dynamics in a simple fluid drift-wave turbulence model
P2.030	D. Lopez-Bruna, T. Estrada, F. Medina, E. de la Luna, E. Ascasibar, F. Castejon, V. I. Vargas
	Effect of magnetic resonances in the effective electron heat transport of TJ-II ECH plasmas
P2.031	D. Reiser
	Zonal flow dynamics and GAM oscillations in tokamaks with Zonal flow dynamics and GAM oscillations in tokamaks with resonant magnetic field perturbations
P2.032	D. Strintzi, A. G. Peeters, J. Weiland
	The toroidal momentum diffusivity in a tokamak plasma a comparison of fluid and kinetic calculations
P2.033	E. Anabitarte, O.F. Castellanos, M. Passas, J.M. Senties
	First experimental results of statistical properties of turbulence plasma fluctuations in the SPLM upgrade
P2.034	E.Belonohy, M.Hirsch, K.McCormick, G.Papp, G.Pokol, H.Thomsen, A.Werner, S.Zoletnik
	Edge instabilities in the high density H-mode operation of W7-AS
P2.035	E R Solano, K Rantamaki, T Tala
	Plasma evolution towards critical equilibria and diamagnetism
P2.036	Elina Asp, JanWeiland, Stefano Alberti, Alessandro Bortolon, Basil Duval, Yves Martin, Laurie Porte, Olivier Sauter the TCV Team
	Spontaneous rotation in TCV
P2.037	F. Mehlmann, C. Ionita, H.W. Müller, P. Balan, A. Herrmann, A. Kendl, M. Maraschek, V. Naulin, A.H. Nielsen, J.J. Rasmussen, V. Rohde, R. Schrittwieser, ASDEX Upgrade Team
	Radial transport in the L- and H-mode SOL of ASDEX Upgrade
P2.038	G. Sonnino, Ph. Peeters, F. Zonca, G. Breyiannis
	A Kinetic Model for the Collisional Diffusion Coefficients of Magnetically Confined Plasmas in the Low- collisional Regime
P2.039	G. Sánchez Burillo, B. Ph. van Milligen, A. Thyagaraja
	A study of radial tracer transport in a turbulent transport code
P2.040	G. Van Oost, M. Gryasznevich, H. Fernandes, C. Silva, A. Malaquias
	Overview of results from the 3rd International Joint Experiment at Tokamak ISTTOK
P2.041	H. Isliker, Th. Pisokas, L. Vlahos
	An MHD compatible model for Self-Organized Criticality in toroidally confined plasma
P2.042	H. Nordman, R. Singh, T. Fülöp, LG. Eriksson, R. Dumont, P. Strand, M. Tokar, J. Weiland
	Anomalous Impurity Transport in Tokamaks in the Presence of RF Fields
P2.043	I. Calvo, L. Garcia, B. A. Carreras, R. Sanchez, B. Ph. van Milligen
	Pseudochaotic poloidal transport in toroidal geometry. Pressure-gradient-driven turbulence and plasma flow topology

P2.044	I.E. Sarris, B. Cassart, D. Carati, N.S. Vlachos
	Development of a numerical method for the modelling of nonlinear fusion plasma instabilities in Tokamaks
P2.045	I.Sandberg,G.Fuhr,H.Isliker,K.Hizanidis,S.Benkadda,P.Beyer,X.Garbet
	Intermittency in Resistive Ballooning Electromagnetic Turbulence
P2.046	I.Yu. Senichenkov, V.A. Rozhansky, A.V. Bogomolov, V.K. Gusev, N.V. Sakharov, Yu.V. Petrov, V.B. Minaev, S.Yu Tolstyakov, M.I. Patrov, F.V. Chernyshev, B.B. Ayushin, G.S Kurskiev, the Globus-M team
	Simulation of L and H regimes for spherical tokamak Globus-M with ASTRA transport code
P2.047	J.M.Delgado
	Diamagnetic effects in a simple transition model
P2.048	J.M. Dewhurst, B. Hnat, N.Ohno, R.O. Dendy, S. Masuzaki, T. Morisaki, A. Komori, B.D. Dudson, G.F. Counsell, A. Kirk
	Statistical properties of edge plasma turbulence in the Mega-Amp Spherical Tokamak and the Large Helical Device stellarator
P2.049	J.M. Reynolds, D. Lopez-Bruna, J. Guasp, J.L. Velasco, A. Tarancon
	Simulating drift kinetic electron-ion equation with collisions in complex geometry
P2.051	A.Sengupta, A.Werner, M.Otte, J.Geiger
	Fast recovery of vacuum configuration of WEGA stellarator with error field effects
P2.052	P. Maget, G.T.A. Huysmans, H. Lütjens, Ph. Moreau, JL. Ségui
	Evaluation of Two-Fluid effects on Double-Tearing Mode stability
P2.053	K.Ichiguchi, B.A.Carreras
	Numerical Analysis of Non-Resonant Pressure Driven Mode in Heliotron Plasma
P2.054	F. Bonomo, D. Terranova, A. Alfier, M. Gobbin, R. Lorenzini, L. Marrelli, R. Pasqualotto
	QSH in high current RFX-mod plasmas thermal and topological features
P2.055	H. M. Smith, E. Verwichte, L. Appel, M. K. Lilley, S. D. Pinches, S. E. Sharapov
	Two-dimensional compressional Alfvén eigenmode structure
P2.056	L. Frassinetti, P. Brunsell, M. Cecconello, J. R. Drake, M. W. M. Khan, S. Menmuir, K.E.J. Olofsson
	Active feedback control of QSH in EXTRAP-T2R
P2.057	D. Apostolaki, G.N. Throumoulopoulos, H. Tasso
	A contribution to the equilibrium and stability of axisymmetric plasmas with field aligned flow
P2.058	S. P. Hirshman, R. A. Sanchez, V. E. Lynch, E. A. D'Azevedo
	SIESTA A Scalable Iterative Equilibrium Solver for Toroidal Applications
P2.059	D.P. Brennan, S.E. Kruger, R.J. La Haye
	Flow Shear Effects on Resistive MHD Instabilities in Tokamaks
P2.060	R. Takahashi, D.P. Brennan, C.C. Kim
	Kinetic Effects of Energetic Particles on Resistive MHD Stability
P2.061	F. Watanabe, K. Toi, S. Ohdachi, S. Sakakibara, S. Morita, K. Narihara, I. Yamada, Y. Narushima, T. Morisaki, C. Suzuki, K. Tanaka, T. Tokuzawa, K.Y. Watanabe
	Ballooning Structure of Edge MHD Mode Observed in the Large Helical Device Plasmas with Externally

Applied Magnetic Perturbations

P2.062	J. Geiger
	Investigation of Wendelstein 7-X Configurations with Increased Toroidal Mirror
P2.063	A.A. Martynov, S. Yu. Medvedev, L. Villard
	Tokamaks with Reversed Current Density Stability of Equilibria with Axisymmetric Islands
P2.064	M. Hölzl, S. Günter, Q. Yu
	Heat Diffusion across Magnetic Islands and Ergodic Layers in Realistic Tokamak Geometry
P2.065	G.T.A. Huysmans, R. Abgrall, R. Huart, B. Nkonga, S. Pamela, P. Ramet
	Non-linear MHD code development for ELM simulations
P2.066	V. Igochine, T. Bolzonella, M. Baruzzo, G. Marchiori, A. Soppelsa, D. Yadikin, H. Zohm
	Externally Induced Rotation of the Resistive Wall Modes in RFX-MOD
P2.067	F. Villone, T. Bolzonella, Y. Q. Liu, G. Marchiori, R. Paccagnella, G. Rubinacci, A. Soppelsa
	RWM modelling in RFX-mod including 3D conducting structures
P2.068	L.Urso, H.Zohm, A. Isayama, Y. Kamada
	Fitting of the Modified Rutherford Equation a comparison bewteen ASDEX Upgrade and JT-60U results
P2.069	A.A. Ivanov, A.A. Martynov, S.Yu. Medvedev, D.A. Kislov, B.V. Kuteev, V.D. Pustovitov, A.M. Popov
	Threshold Effects for Pellet-Plasma Interaction in Tokamak - MHD Modeling
P2.070	G. Kocsis, A. Aranyi, V. Igochine, S. Kalvin, L. Lackner, P.T. Lang, M. Maraschek, V. Mertens, T. Szepesi
	Investigation of pellet -driven plasma perturbations for ELM trigger studies
P2.071	C. Konz, P.B. Snyder, N. Aiba, L.D. Horton, C.F. Maggi, S. Guenter, P.J. Mc Carthy, ASDEX Upgrade Team, DIII-D Team
	Cross-Machine and Cross-Code Comparisons in Linear MHD Stability Analysis for Tokamaks
P2.072	T. Voslion, O. Agullo, P. Beyer, S. Benkadda, X. Garbet
	Nonlinear Interaction of Magnetic Islands In Presence of Shear Flow
P2.073	T.C. Luce, E.J. Doyle, J.C. DeBoo, G.L. Jackson, T.A. Casper, J.R. Ferron, P.A. Politzer, M.R. Wade, R.J. Groebner, C.T. Holcomb, D.A. Humphreys, A.W. Hyatt, M. Murakami, T.W. Petrie, C.C. Petty, W.P. West
	Simulation of ITER Operational and Startup Scenarios in the DIII-D Tokamak
P2.074	V.E. Lukash, A.A. Kavin, R.R. Khayrutdinov, Y.V. Gribov, A.B. Mineev
	Study of early phase of current ramp-up in ITER with DINA code
P2.075	Y. Nakamura, H. Fujieda, N. Takei, S. Miyamoto, Y. Kusama, R. Yoshino
	A Simulation Modelling of Inductive/Non-inductive Current Ramp-up at Slow Rate for Low li, High Vertical Stability
P2.076	B.Wu,C.Y.Lin,Y.D.Pan
	Discharge simulation of EAST first plasma
P2.077	V. M. Leonov, V.E. Zhogolev
	Possibility of scenarios with the ignition for ITER
P2.078	T. Fulop, G. Pokol, H. Smith, P. Helander, M. Lisak

Magnetic field threshold for runaway generation in tokamak disruptions

P2.079 T.A. Casper, J.R. Ferron, D.A. Humphreys, G.L. Jackson, J.A. Leuer, L.L. LoDestro, T.C. Luce, W.H. Meyer, L.D. Pearlstien, A.S. Welander

ITER Scenario Performance Simulations Assessing Control and Vertical Stability

- P2.080 F. Villone, R. Albanese, G. Ambrosino, Y.Q. Liu, A. Pironti, A. Portone, G. Rubinacci *RWM control in ITER including a realistic 3D geometry*
- P2.081 D. Stutman, G. Caravelli, M. Finkenthal, G. Wright, D. Whyte, R. Kaita Free-standing Diffractive Optical Elements as Light Extractors for Burning Plasma Experiments
- P2.082 N.Yamaguchi, S.Morita, M.B.Chowdhuri, M.Goto, H.Y.Zhou Space-resolving flat-field EUV spectrograph for Large Helical Device
- P2.083 T.Pütterich,C.F.Maggi,L.D.Horton,R.Dux,B.Langer,E.Wolfrum Fast CXRS-measurements in the Edge Transport Barrier of ASDEX Upgrade
- P2.084 S.G. Lee, J.G. Bak, U.W. Nam, M.K. Moon, J.K. Cheon

Calibration of advanced X-ray imaging crystal spectrometer for KSTAR tokamak

- P2.085 Y. Feng, J. Kisslinger, F. Sardei, D. Reiter EMC3/EIRENE Transport Modelling of the Island Divertor in W7-X
- P2.086 F. Leipold, H. Bindslev, V. Furtula, S.B. Korsholm, F. Meo, P.K. Michelsen, M. Salewski *Fast Ion CTS Diagnostic for ITER State of Design*
- P2.087 S.I. Lashkul, A.B. Altukhov, A.O. Bogdanenko, E.O. Vekshina, V.V. Dyachenko, L.A. Esipov, S.V. Shatalin *Visualization of the Plasma Processes at Additional Lower Hybrid Heating on the FT-2 Tokamak*
- P2.088 M.Wisse, N.J.Conway, J.F.G. McCone, D. Muir

Measurements of plasma rotation in the MAST tokamak

P2.089 E. Gusakov, S. Heuraux, A. Popov

Nonlinear regime of Bragg backscattering leading to probing wave trapping and time delay jumps in fast frequency sweep reflectometry

P2.090 B. Zurro, A. Baciero, V. Tribaldos, D. Jiménez-Rey

An Investigation on the Mechanisms for Differential Poloidal Rotation of Proton and Impurities in the TJ-II Stellarator

- P2.092 M. Sato, A. Isayama
 - Radiation temperature of ECE in bi-Maxwellian tokamak plasma
- P2.093 V.V. Bulanin, L.G. Askinazi, S.V. Lebedev, V.A. Kornev, A.V.Petrov, A.S. Tukachinsky, M.I. Vildjunas, A.Yu. Yashin

The two-frequency Doppler reflectometer application for plasma sheared rotation study in the TUMAN 3M tokamak

- P2.094A. Baciero, B. Zurro, D. Jiménez-Rey, R.J. PeláezMeasurement of carbon ion emissions from TJ-II stellarator plasmas and their relation with plasma properties
- P2.095 Y. Shibata, M. Okamoto, N. Ohno, M. Goto, K.Y. Watanabe

Evaluation of Electron Temperature Dependence of Current Decay Time in the Large Helical Device

P2.096	J. Preinhaelter, V. Fuchs, J. Urban, J. Zajac, S. Nanobashvili
	Plans for electron Bernstein waves emission detection in COMPASS-D
P2.097	F.V. Chernyshev, B.B. Ayushin, V.V. Dyachenko, V.K. Gusev, S.A. Khitrov, S.V. Krikunov, G.S. Kurskiev, V.B. Minaev, M.I. Mironov, Yu.V. Petrov, N.V. Sakharov, O.N. Shcherbinin, S.Yu.Tolstyakov
	Fast Particle Confinement Studies in Globus-M Spherical Tokamak
P2.098	V. Fuchs, O. Bilyková, R. Pánek, M. Stránský, J. Stöckel, J. Urban, F. Žácek, J. Decker, Y.Peysson, I. Voitsekhovitch, M.Valovic
	Heating and current drive modeling for the IPP Prague COMPASS tokamak
P2.099	E. J. Valeo, C. K. Phillips, J. R. Wilson, P. T. Bonoli, J. C. Wright, R. Bilato, M. Brambilla
	Full-wave simulations of lower hybrid wave propagation in toroidal plasma with nonthermal electron distributions
P2.100	R.J. Dumont, LG. Eriksson
	Self-consistent modelling of FWCD in tokamak plasmas
P2.101	A. Frattolillo, F. Bombarda, S. Migliori, L.R. Baylor, S.K. Combs, J.B.O. Caughman, C. Foust, B. Coppi, G. Roveta
	Development of the High Speed Pellet Injector for Ignitor
P2.102	D. Wünderlich, R. Gutser, U. Fantz, M. Berger, S. Christ-Koch, P. Franzen, M. Fröschle, B. Heinemann, W. Kraus, C. Martens, P. McNeely, R. Riedl, E. Speth
	Modeling of Negative Ion RF Sources for ITER NBI - Current Status and Recent Achievements
P2.103	V.A. Kornev, L.G. Askinazi, F.V. Chernyshev, V.E. Golant, S.V. Krikunov, S.V. Lebedev, A.D. Melnik, D.V. Razumenko, V.V. Rozhdestvensky, A.S. Tukachinsky, M.I. Vildjunas, N.A. Zhubr
	Analysis of density dependence of neutron rate in NBI experiments on TUMAN-3M
P2.104	A.V. Voronin, V.K.Gusev, G.S. Kurskiev, B.B. Ayushin, M.M.Kochergin, E.E.Mukhin, V.B.Minaev, Yu.V.Petrov, N.V.Sakharov, S.Yu.Tolstyakov
	Two stage plasma gun as the fuelling tool of the Globus-M tokamak
P2.105	B. Van Compernolle, R. Maggiora, G. Vecchi, D. Milanesio, R. Koch
	Implementation of sheath effects into TOPICA
P2.106	R. Cesario, G. Calabrò, A. Cardinali, C. Castaldo, M. Marinucci, V. Pericoli-Ridolfini
	Lower hybrid current drive at high densities of ITER
P2.107	R. Ikeda, K. Toi, M. Takeuchi, C. Suzuki, T. Shoji , T. Akiyama, M. Isobe, S. Nishimura, S. Okamura, K. Matsuoka
	Production and heating of over-dense plasmas by mode-converted electron Bernstein waves at very low toroidal field in the Compact Helical System
P2.108	S.Yu. Tolstyakov, S.E. Aleksandrov, B.B. Aushin, V.K. Gusev, M.M. Kochergin, N.A. Khromov, G.S. Kurskiev, V.B. Minaev, A.B. Mineev, E.E. Mukhin, M.I. Patrov, Yu.V. Petrov, A.V. Voronin, V.V. Semenov, N.V. Sakharov, V.I. Varfolomeev, V.A. Rozhansky, I.Yu. Senichenkov
	Kinetic measurements of plasma electron component dynamics in the Globus-M tokamak during plasma gun injection experiment
P2.109	V.A. Soukhanovskii, JW.Ahn, M.G. Bell, R.E. Bell, J.Boedo, D.A. Gates, R. Kaita, H.W.Kugel, B.P. LeBlanc, D.P. Lundberg, R. Maingi, J.E. Menard, R. Raman, A.L. Roquemore, D.P.Stotler, NSTX
	H-mode fueling optimization with supersonic deuterium jet in the National Spherical Torus Experiment NSTX

- P2.110 M.C. Kaufman, J.A. Goetz, J.K. Anderson, A.F. Almagri, D.R. Burke, W.A. Cox, C.B. Forest, J.G. Kulpin, P.D. Nonn, S.P. Oliva, S.C. Prager
 Lower Hybrid and Electron Bernstein Wave Experiments in MST P2.111 S.Kalvin, G.Kocsis, G.Veres, D. Wagner
- 12.111 S.Kalvin, O.Kocsis, O. Veres, D. Wagner
 - Quasi two-dimensional simulation of the hydrogenic pellet ablation and plasmoid expansion
- P2.112 F. Imbeaux, J.B. Lister, G.T.A. Huysmans, L. Appel, W. Zwingmann, M. Airaj, V. Basiuk, D. Coster, B. Guillerminet, D. Kalupin, C. Konz, G. Manduchi, G. Pereverzev, Y. Peysson, L.G. Eriksson, M. Romanelli, P. Strand

Data structure for the European Integrated Modelling Task Force

P2.113 A. Kus, D. Pretty, E. Ascasibar, C.D. Beidler, B. D. Blackwell, R. Brakel, R. Burhenn, F.Castejon, A. Dinklage, T. Estrada, Y. Feng, A. Fujisawa, H. Funaba, J. Geiger, J.H. Harris, C. Hidalgo, K. Ida, M. Kobayashi, R. König, G. Kühner, D. Lopez Bruna, H. Maaßberg, K.McCarthy, D. Mikkelsen, T. Minami, T. Mizuuchi, S. Murakami, N. Nakajima, S. Okamura, R. Preuss, S. Sakakibara, F. Sano, F. Sardei, T. Shimozuma, U. Stroth, Y. Suzuki, Y. Takeiri, J. Talmadge, V. Tribaldos, H. Thomsen, Yu. A. Turkin, J. Vega, K.Y. Watanabe, A. Weller, A. Werner, R. Wolf, H. Yamada, M. Yokoyama

Status of the International Stellarator/Heliotron Profile Database

- P2.114 V.E.Moiseenko, K.Noack, O.Agren
 - Stellarator-Mirror Based Driven Fusion-Fission Reactor
- P2.115 H. Ferrari, R. Farengo
 - Current Drive and Heating in a D-3He FRC Fusion Reactor
- P2.116 D.Grasso, R.J.Hastie, P.Helander
 - Effect of a runaway electron current on tearing modes
- P2.117 C. Meyer, O. Bonville, A. Boscheron, P. Canal, A. Casner, J. F. Charrier, G. Huser, C. Lepage, O. Henry, L. Marmande, E. Mazataud, D. Raffestin, J. L. Rullier
 - Overview of ALISE laser facility at CEA
- P2.118 J.Fuchs, L. Lancia, J.-R. Marquès, L. Romagnani, M. Grech, T. Grismayer, S. Weber, P. Antici, N. Bourgeois, T. Lin, M. Nakatsutsumi, R. Kodama, P. Audebert

Experimental demonstration of ion viscosity and non-local heat transport effects in high-power laser propagation in underdense plasmas

P2.120 A. Velyhan, B. Bienkowska, M. Chernyshova, I. M. Ivanova-Stanik, L. Juha, Z. Kalinowska, M. Králík, J. Krása, J. Kravárik, P. Kubeš, H. Schmidt, M. Scholz

Influence of emission time on energy distribution of neutrons produced by plasma focus

- P2.121 S. E. Jiang, S.W. Li
 - Investigation of scaling laws for radiation temperature with Al shock wave velocity
- P2.122 B. Canaud, D. Elbaz, R. Piron, F. Philippe
 - Shock propagation in wetted foams in the context of Inertial Confinement Fusion
- P2.123 V. Bychkov, M. Modestov, M. Marklund, L.E. Eriksson The darrieus-landau instability in laser ablation
- P2.124 V. Drean, M.Olazabal-Loume, X. Ribeyre, J. Sanz, V. Tikhonchuk
 Numerical simulations and stability study of double ablation front structures, using radiation transport effects in direct-drive ICF

P2.125	J.J. Martinell, R.M. Fajardo
	A model for ion acceleration in a z-pinch during an m 0 instability
P2.126	J. Sanz, R. Betti, M. Olazabal-Loume, J. Feugeas, X. Ribeyre, V. Drean
	Analytical theory of radiative ablation fronts for direct drive ICF targets
P2.127	C. K. Li, F. H. Séguin, J. R. Rygg, J. Frenje, M. Manuel, R. D. Petrasso, R. Betti, J. Delettrez, J. P. Knauer, F. Marshall, D. D. Meyerhofer, D. Shvarts, V. A. Smalyuk, C. Stoeckl, W. Theobald, O. L. Landen, R. P. J. Town, C. A. Back, J. D. Kilkenny
	Monoenergetic Proton Radiography of Fields, Areal Density and Implosion Dynamics in Direct-Drive Inertial Confinement Fusion
P2.128	M. Rabec le Gloahec, A.M. Sautivet
	Overview of the LULI2000 laser and experimental facility
P2.129	N.C. Woolsey, J. Howe, D.M. Chambers, C. Courtois, E. Foerster, C.D. Gregory, I.M. Hall, O. Renner, I. Uschmann
	Parametric instabilities measurement via X-ray spectroscopy
P2.130	A.A. Golubev, M.M. Basko, K.L. Gubskii, A.A. Drozdovskii, D.D. Iosseliani, A.V. Kantsyrev, M.A. Karpov, A.P. Kuznetsov, Yu.B.Novozhilov, O.V. Pronin, S.M. Savin, P.V. Sasorov, D.A.Sobur, B.Yu. Sharkov, V.V. Yanenko
	Plasma lens for high energy density in matter produced by heavy ion beam.
P2.131	B.T. Egorychev, A.V. Ivanovsky, G.I. Volkov, I.V. Morozov, A.I. Kraev, A.A. Petrukhin
	Experimental study of a possibility of quasi-spherical compression of thermonuclear target using a model
P2.132	J.Meyer-ter-Vehn, A.Tronnier, Y.Cang
	Physical Collision Frequency for Metals and Warm Dense Matter
P2.133	C. Garcia-Fernandez, M. González, P. Velarde
	Study of the influence of numerical techniques of radiation in laser-matter interaction problems
P2.134	G.I. Dolgachev, D.D. Maslennikov, A.A. Shvedov, A.G. Ushakov, A.S. Fedotkin, I.A. Khodeev
	Plasma opening switches in the inertial confinement fusion programs
P2.135	J,M. Perlado, M.J.Caturla, AAbanades, C.Arevalo, D.Diaz, L.Gámez, B.Gamez, Y.Herreras, A.Lafuente, J.Marian, E.Martínez, F.Mota, C,Ortiz, E.delRio, F.Sordo, M.Velarde, M.Victoria, T.Villar
	Damage, Fluidynamics and Tritium handling in IFE reactors
P2.136	O.M. Burenkov, A.V. Ivanovsky, V.P. Korchagin, I.V. Morozov, V.K. Chernyshev, S.V. Pak, G.I. Volkov, Yu.N. Dolin, V.I. Dudin, P.V. Duday, V.V. Avdoshin, A.A. Zabiralov, V.A. Ivanov, V.B. Kudelkin, O.D. Mikhailov, A.N. Skobelev, A.I. Krayev, A.M. Glybin, S.M. Polyushko, A.T. Shakhalkin
	Experimental Study Of "Mago" Chamber With Cylindrical Compression Compartment
P2.137	Yu. Kalinin, S.Anan'ev, Yu. Bakshaev, A. Bartov, P. Blinov, A. Chernenko, S.Danko, E. Kazakov, A. Kingsep ,V.Korolev, V. Mizhiritsky, S. Pikuz, V. Romanova, T. Shelkovenko, V. Smirnov, S. Tkachenko, A. Zelenin
	Pulsed plasma dynamics in different kinds of imploding loads of megaampere range.
P2.138	Didier Benisti, David J. Strozzi, Laurent Gremillet
	Nonlinear kinetic modelling of Stimultaed Raman Scattering
P2.139	I. D. Kaganovich, A. B. Sefkow, E.A. Startsev, R.C. Davidson
	Transport Of Intense Beam Pulses Through Background Plasma

P2.140	M.Grech, G.Riazuelo, D.Pesme, S.Weber, V.T.Tikhonchuk
	A new figure of merit for the control of laser beam propagation in inertial confinement fusion plasmas
P2.141	B.Brandao, R.Bingham, L.O.Silva
	Stimulated Brillouin scattering driven by white light
P2.142	D. Margarone, D. Mascali, L. Torrisi, R. Miracoli, N. Gambino, S.G ammino
	Langmuir Probe Diagnostics of Plasma Produced by Laser Ablation
P2.143	J. Limpouch, O. Renner, O. Klimo, D. Klir, V. Kmetik, E. Krousky, R. Liska, K. Masek, W. Nazarov, M. Sinor
	Line X-Ray Emission from Laser Irradiated Low-Density Foams Doped by Chlorine
P2.144	L. Torrisi, A. Borrielli, F. Caridi, D. Margarone, S. Gammino
	Optical Spectroscopy in Laser-generated Plasma at a pulse intensity of 10 10 W/cm 2
P2.145	V.I.Turtikov, A.A.Golubev, A.D.Fertman, V.E.Fortov, V.S.Demidov, E.V.Demidova, S.V.Dudin, M.M.Katz, S.B.Kolerov, S.A.Kolesnikov, V.A.Korolev, V.B.Mintzev, G.N.Smirnov, B.Yu.Sharkov, A.V.Utkin
	Application of ITEP TWAC Accelerator Beams for Diagnostics Of Fast Process
P2.146	V.V. Vatulin
	Investigation of intense ion beams interaction with matter and dynamic processes in irradiated targets
P2.148	S. M. Hassan, E. O. Baronova, E. L. Clark, G. C. Androulakis, C. Petridis, A. Gopal, S. Minardi, J. Chatzakis, V. V. Vikherv, E. Tzianaki, P. Lee, M. Bakarezos, N.A. Papadogiannis, M. Tatarakis
	Spectroscopic Investigation of Radiation from a Low Current X-Pinch
P2.149	V.I. Annenkov, A.V. Bessarab, V.V. Vatulin, S.G. Garanin, N.V. Zhidkov, V.M. Izgorodin, G.A. Kirillov, V.P. Kovalenko, V.A. Krotov, P.G. Kuznetsov, A.V. Kunin, S.P. Martynenko, V.M. Murugov, S.I. Petrov, A.V. Pinegin, A.V. Senik, N.A. Suslov, G.V. Tachaev
	Investigation of x-ray radiation interaction with matter on "Iskra-5" laser
P2.150	J.Berardo, N. Lemos, C. Clayton, J. M. Dias
	Refractometry diagnostic for plasma columns produced by intense laser pulses
P2.151	C. Mezel, A. Bourgeade, L. Hallo, O. Saut
	Electron generation in femtosecond laser heated dielectrics
P2.152	A. Grinenko, D.O. Gericke, J. Vorberger
	Simulations for Dynamic Compression of Hydrogen with Intense Heavy Ion Beams
P2.153	O. Morice, M. Casanova
	Nanosecond Raman scattering computation in large plasmas
P2.154	V.V.Vikhrev, G.C.Androulakis, E.O.Baronova, S.M.Hassan, E.L.Clark, A.Gopal, S.Minardi, C.Petridis, J.Chatzakis, A.Skoulakis, E.Tzianaki, M.Bakarezos, N.A.Papadogiannis, M.Tatarakis
	MHD Simulation for X-pinch plasma dynamics
P2.155	E. Havlickova, P. Bartos, R. Hrach, V. Hrachova
	Computational study of sheath structure in electronegative gases at various pressures
P2.156	I. Litovko
	Computer modeling of sharp electron beam generation by plasma electron gun
P2.157	J.D.E. Stokes, A.A. Samarian, S.V. Vladimirov

	Two-stage transition in dust particle alignment ina plasma sheath
P2.158	M. Bacharis, D. Selemir, M. Coppins, J. E. Allen
	Radio frequency effects on the charging of dust grains
P2.159	M. Rubin-Zuzic, H. M. Thomas, S. K. Zhdanov, G. E. Morfill
	Circulation' dynamo in complex plasma
P2.160	N.F.Cramer
	Nonlinear dust-lattice waves - a modified Toda lattice
P2.161	N.G. Gusein-zade, I.A. Lubashevsky, S.A. Maiorov
	Dust chain with asymmetrical interaction
P2.162	P. Huber, G. E. Mor, A. V. Ivlev, B. A. Klumov, H. M. Thomas, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, O. F. Petrov
	Observation of 3 dimensional structures of electrorheological plasmas
P2.163	E. Benova, T. Bogdanov
	Wave propagation characteristics of coaxial discharge sustained by traveling electromagnetic wave
P2.164	H. Kersten, I. Teliban, V. Schneider, T. Trottenberg, H. Neumann, M. Tartz, F. Scholze
	Diagnostics of ECR-MW Broad Beam Ion Sources
P2.165	M. Haass, T. Ockenga, J. Blazec, R. Basner, M. Wolter, H. Kersten
	Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostics
P2.166	M. Cercek, T. Gyergyek
	Potential Structures Formed in Two - Temperature Plasma With Two Positive Ion Species
P2.167	E.R. Ionita, M.D. Ionita, C. Stancu, M. Teodorescu, G. Dinescu
	Operation Domains of a Small Size Atmospheric Pressure Cold Plasma Source and its Application to Polymer Surface Modification
P2.169	F. Massines, Et.Es-sebbar, N. Gherardi, N. Naudé, D. Tsyganov, P. Ségur, S. Pancheshnyi
	Comparison of Townsend dielectric barrier discharge in N_2 , N_2 - O_2 and N_2 - N_2O behaviour
P2.170	I.E. Garkusha, V.V. Chebotarev, A. Hassanein, M.S. Ladygina, A.K. Marchenko, Yu.V. Petrov, D.G. Solyakov, V.I. Tereshin, S.A. Trubchaninov
	EUV Radiation of Xenon Plasma Streams Generated by Magnetoplasma Compressor
P2.171	I. Litovko, V. Gushenets
	Computer Simulation for Optimization of Ion Sources
P2.172	I. Litovko, A. Goncharov
	Plasma-dynamical Model Of Magnetron Type Cylindrical Gas Discharge
P2.173	A. Sadovski
	Electromagnetic waves generated by the ion distribution function with velocity space holes
P2.174	A. Stockem, M. E. Dieckmann, R. Schlickeiser
	Suppression of the filamentation instability by a flow-aligned magnetic field
P2.175	A.V.Glushkov, O.Yu.Khetselius, E.P.Gurnitskaya, S.V.Malinovskaya

	QED approach to the photon-plasmon transitions and diagnostics of the space plasma turbulence
P2.176	F. Ceccherini, A. Biancalani, F. Pegoraro
	Active Magnetic Experiment a magnetic bubble in the ionospheric stream
P2.177	C. Ionita, R. Stenzel, R. Schrittwieser
	Plasma Fireballs
P2.178	C. Montagna, F. Pegoraro
	Role of temperature and density in stationary solutions of the Vlasov-Maxwell system
P2.179	E. Tassi, D. Grasso, F. Pegoraro
	Nonlinear dynamics of magnetic reconnection in collisionless plasmas
P2.180	G.N. Throumoulopoulos, H. Tasso
	A sufficient condition for the linear stability of magnetohydrodynamic equilibria with field aligned incompressible flows
P2.181	Gyergyek T., Cercek M.
	A one-dimensional kinetic model of the current-voltage characteristics of an electron emitting electrode immersed in a two-electron temperature plasma
P2.182	I. Furno, A. Fasoli, B. Labit, M. Podestà, P. Ricci, C. Theiler
	Investigation of the existence of an improved confinement regime in simple magnetized toroidal plasmas
P2.183	Juan Miguel Gil de la Fe
	Determination of level populations and radiative properties of optically thin and tick carbon plasmas
P2.184	L. Galeotti, F. Califano, A. Mangeney, F, Pegoraro
	Limits of a plasma mean field theory, a numerical experiment
P2.185	Y. Kominis, K. Hizanidis, A.K. Ram
	Nonlinear Theory of Cyclotron Resonant Wave-Particle Interactions Analytical results beyond the Quasilinear Approximation
P2.186	B.J. Kellett, V. Graffagnino, R. Bingham, T.W.B. Muxlow, A.G. Gunn, D.C. Speirs, S.L. McConville, K.M. Gillespie, K. Ronald, A.D.R. Phelps, A.W. Cross, C.W. Robertson, C.G. Whyte, I. Vorgul, R.A. Cairns
	Plasma Physics of Pulstar Emission
P2.187	J.N. Waugh, E. Brambrink, C.D. Gregory, R. Kodama, M. Koenig, B. Loupias, Y. Kuramitsu, Y. Sakawa, H. Takabe, L.A. Wilson, N.C. Woolsey
	A jet production experiment using a short pulse laser
P2.188	N.P. Kyrie, A.G. Frank, V.S. Markov, G.S. Voronov
	Plasma heating and generation of plasma jets in current sheets formed in 3D magnetic configurations
P2.189	S. Oldenbuerger, N. Lemoine, F. Brochard, G. Bonhomme, A. Lazurenko, S. Mazouffre
	Investigation of high-frequency plasma oscillations in Hall thrusters
P4.001	J. R. Myra, M. V. Umansky
	Linear Analysis Tools for Edge and SOL Plasmas
P4.002	M.GemisicAdamov, B.Kurzan, H.Murmann, W.Suttrop
	ELM synchronized Thomson scattering measurements on ASDEX Upgrade

P4.003	M. Groth, M. Wischmeier, N.H. Brooks, D.P. Coster, J. Harhausen, A. Kallenbach, C.J. Lasnier, A.W. Leonard, H.W. Muller, T.H. Osborne, G.D. Porter, J.G. Watkins
	Comparison and SOL Modeling of Ohmic Plasmas in ASDEX Upgrade and DIII-D
P4.004	M.L.Apicella, G.Apruzzese, G.Mazzitelli, A.G.Alekseyev, V.B.Lazarev, S.V.Mirnov
	Lithiation of the FTU tokamak with a critical level of lithium injection
P4.005	M.N.A. Beurskens, A. Alfier, W. Fundamenski, E. Giovannozzi, M. Kempenaars, G. Maddison, R. Pasqualotto, R. A. Pitts, S. Saarelma, J.W. Weber
	Pedestal dynamics in ELMy H-mode plasmas in JET
P4.006	M.Shoucri
	Numerical Simulation for the Formation of a Charge Separation and an Electric Field at a Plasma Edge
P4.007	P.Devoy, P.K.Browning, C.G.Gimblett
	Amplitude bifurcation in the peeling-relaxation ELM model
P4.009	R.C.Wieggers, H.J.de Blank, V.Kotov, P. Boerner, D.Reiter, W. J.Goedheer
	B2-Eirene study of the effects of heating in a linear plasma device
P4.010	R. Fischer, E. Wolfrum, W. Suttrop, A. Kallenbach
	Integrated density profile analysis in ASDEX Upgrade H-modes
P4.011	R. Pugno, R. Dux, A. Kallenbach, M. Mayer, R. Neu, V. Rohde, T. Puetterich, C. Maggi, ASDEX Upgrade Team
	Evolution of carbon content in ASDEX Upgrade during the transition to a full W machine
P4.012	S.A.Barengolts, G.A.Mesyats, M.M.Tsventoukh
	The Initial Stage of the Unipolar Arc Hot Spot Formation Due to the Microexplosion at the Surface
P4.013	S. Jachmich, M. Van Schoor, R.R. Weynants, Y. Xu, M. Jakubowski, M. Lehnen, M. Mitri, O. Schmitz
	Experimental study of toroidal and poloidal rotation induced by edge ergodization and electrode biasing in TEXTOR
P4.014	S. Pestchanyi, I. Landman
	Simplified model for carbon plasma production by ELMs in ITER
P4.015	S. Suwanna, T. Onjun, P. Leekhaphan, D.Sukboon, P.Thanasutives, R.Picha, N.Poolyarat, O.Onjun
	The Development of Pedestal Temperature Model with Self-consistent Calculation of Safety Factor and Magnetic Shear
P4.016	J.W. Coenen, M.Clever, K.H.Finken, H. Frerichs, M. Jakubowski, A.Krämer-Flecken, M. Lehnen, M. Mitri, U.Samm, B.Schweer, O.Schmitz, B. Unterberg, TEXTOR-team
	Spectroscopic Measurements of the radial electric field under conditions of improved particle confinement with the Dynamic Ergodic Divertor in TEXTOR
P4.017	K. Allmaier, S.V. Kasilov, W. Kernbichler, G.O. Leitold
	Delta f Monte Carlo computations of neoclassical transport in stellarators with reduced variance
P4.018	K. Crombe, Y. Andrew, T.M. Biewer, P. de Vries, C. Giroud, N.C. Hawkes, A. Meigs, T. Tala
	Radial electric field profiles in JET advanced tokamak scenarios with toroidal field ripple
P4.019	L. Carraro, D. Terranova, F. Auriemma, F. Bonomo, A. Canton, A. Fassina, P. Innocente, R. Lorenzini, R. Pasqualotto, M.E. Puiatti

	Particle transport in different magnetic field topological configurations in the RFX-mod experiment
P4.020	L. Garcia, J.A. Mier, R. Sanchez, B.A. Carreras, I. Calvo, D.E. Newman
	Nondiffusive transport in plasma turbulence
P4.021	L. Vermare, G. Leclert, S. Heuraux, P. Hennequin
	2D numerical simulations of wave propagation on turbulent plasma to help experimental k-spectrum determination
P4.022	MD.Hua, P.C. DeVries, D.C. McDonald, C.Giroud, M.Janvier, M.F.Johnson, T.Tala, K.D.Zastrow
	Scaling of rotation and momentum confinement in JET plasmas
P4.023	M. Aizawa
	Improved Magnetic Field Properties in Low Aspect Ratio L 1 Helical Systems
P4.024	M. Ansar Mahmood, J. Weiland, M. Persson, T. Rafiq
	Study of collisionless TE and ITG modes in an ITER-like equilibrium
P4.025	M.C. Varischetti, M. Lontano, E. Lazzaro
	Energy and momentum transport induced by unstable ITG modes
P4.026	M.C. Varischetti, M. Lontano, L. Valdettaro, E. Lazzaro
	Global stability analysis of ITG modes with shear velocity
P4.027	M. Landreman, B. Coppi
	Confinement Regimes Transition, Angular Momentum Ejection by Toroidal Edge Modes and Relation to Current Experiments
P4.028	M. Ramisch, A. Köhn, N. Mahdizadeh, U.Stroth
	Poloidal asymmetry of turbulent fluctuations in the torsatron TJ-K
P4.029	M. Reshko, N. F. Loureiro, C. M. Roach, H. R. Wilson
	On Theory and Simulations of the Effects of Equilibrium ExB Flow Shear on Drift Waves and Anomalous Transport in Tokamaks
P4.030	N.Poolyarat, T.Onjun, J.Promping, R.Picha, S.Suwanna, O.Onjun
	The Study of Transport in Small Tokamak Experiments Using Integrated Predictive Modeling Code
P4.031	O.A. Shyshkin, B. Weyssow
	Monte Carlo collision operator for the test particle tracing in fusion non Maxwellian plasma
P4.032	O. Tudisco
	Studies of electron temperature characteristic length in FTU
P4.033	P. Angelino, X. Garbet, L. Villard, A. Bottino, S. Jolliet, Ph. Ghendrih, V. Grandgirard, B. F. McMillan, Y. Sarazin, G. Dif-Pradalier, T. M. Tran
	Effects of plasma current and elongation on drift wave-zonal flow turbulence
P4.034	P. J. Catto, F. Parra, G. Kagan, A. N. Simakov
	Gyrokinetic Limitations and Improvements
P4.035	P. Molchanov, V. Rozhansky, S. Voskoboynikov, S. Tallents, G. Counsell, A. Kirk
	Comparison of measured and simulated parallel flows at the edge plasma of MAST

P4.036	P.Strand, J.Kinsey, H.Nordman, J.Weiland
	Drift-wave particle transport - TGLF and EDWM comparisons
P4.037	R.J. McKay, K.G. McClements, A. Thyagaraja, L. Fletcher
	Test-particle simulations of collisional impurity transport in rotating spherical tokamak plasmas
P4.038	R.Klein, P.Morel, N.Besse, E.Gravier, P.Bertrand
	Instabilities in toroidal geometry a Water Bag approach
P4.039	R. Neu, R. Dux, A. Kallenbach, B. Kurzan, C.F. Maggi, R. Pugno, T. Pütterich, F. Ryter, G. Tardini, ASDEX Upgrade Team
	Influence of the 4He Concentration on H-Mode Confinement and Transport in ASDEX Upgrade
P4.040	R.Picha
	The Dependence of ITER Performance on Pedestal Temperature, Density, Heating Power, and Impurity Content
P4.041	S.C. Assas, LG. Eriksson, G.D. Conway, C.F. Maggi, M. Maraschek, JM. Noterdaeme, Vl.V Bobkov
	Toroidal rotation in ICRF only heated ASDEX Upgrade plasmas
P4.042	S.Futatani, S.Benkadda, D.del-Castillo-Negrete, Y.Nakamura, K.Kondo
	Multiscale Analysis of Impurity Transport in Edge Tokamak Plasmas
P4.043	S.I. Lashkul, S.V. Shatalin, P.V. Vajnov, E.O. Vekshina, A.Yu. Popov, L.A. Esipov
	Analyze of the plasma periphery fluctuation parameters measured by multipin Longmuir probes near LCFS on the FT-2 tokfmak
P4.044	S. Inagaki, T. Maruta, T. Yamada, Y. Nagashima, N. Kasuya, S. Shinohara, K. Terasaka, K. Kamataki, M. Yagi, Y. Kawai, A. Fujisawa, K. Itoh, SI. Itoh
	Two-Dimentional Spatial Structure of Plasma Turbulence in LMD-U
P4.045	S.J. Janhunen, J.A. Heikkinen, T.P. Kiviniemi, S. Leerink, M. Nora, F. Ogando
	Transport dynamics of the Cyclone Base case on ELMFIRE
P4.046	S. Jaeger, T. Pierre, C. Rebont, N. Claire, A. Escarguel, A. Ajendouz, K. Quotb
	Current transport and turbulence in a cylindrical plasma magnetically confined
P4.047	S. Leerink, O. Dumbrajs, J.A. Heikkinen, S.J. Janhunen, T.P.Kiviniemi, M.Nora, F.Ogando
	A full f analysis of turbulent transport in the FT-2 Tokomak configuration
P4.048	S.Moradi, D.Kalupin, H.Nordman, R.Singh, M.Tokar, B. Weyssow
	Modeling of confinement improvement and impurity transport in high power JET H-mode discharges with neon seeding
P4.049	S.Oldenbürger, F.Brochard, N.Lemoine, G.Bonhomme
	Investigation of cross-field transport in a linear magnetized plasma
P4.050	T.Estrada,L.Guimarais,T.Happel,E.Blanco,L.Cupido,M.E.Manso
	Velocity shear layer formation and turbulence correlation characteristics measured by reflectometry in TJ-II
P4.051	H.R. Wilson, D.A. Applegate, J.W. Connor, M. James
	The Interaction between Tearing Modes and Transport
P4.052	A.D.Beklemishev, M.S.Chaschin
	Shear-Flow Modification of Interchange

P4.053	A.J. Cerfon, J.P. Freidberg
	The Vanishing MHD Compressibility Stabilization in Closed Line Systems
P4.054	S.L.Newton, S.E.Sharapov, F.Zonca
	On Kinetic Theory and Hall MHD Description of the q equal to 1 Inertial Layer in Fishbone Modes
P4.055	M. Okabayashi, M.S. Chance, M.S. Chu, A.M. Garofalo, Y. In, G.L. Jackson, R.J. La Haye, M.J. Lanctot, Y.Q. Liu, T.C. Luce, G.A. Navratil, H. Reimerdes, E.J. Strait, H. Takahashi, A.S. Welander
	Control of Transiently-Excited Resistive Wall Modes Under Rotationally Stabilized Regime in DIII-D Advanced Tokamak Plasmas
P4.056	M.J. Lanctot, I.N. Bogatu, M.S. Chu, A.M. Garofalo, Y. In, G.L. Jackson, R.J. La Haye, Y.Q. Liu, G.A. Navratil, M. Okabayashi, H. Reimerdes, W.M. Solomon, E.J. Strait
	Mode Structure of the Plasma Response to Error Fields
P4.057	M.M.Tsventoukh
	Equilibrium and Stability of the Plasma Confined by Double-Dipole Device
P4.058	L.E. Zakharov, E.D. Fredrickson, E.M. Granstedt, S.I. Krasheninnikov, H. Takahashi
	Wall touching kink modes in disruptions and at the plasma edge in tokamaks
P4.059	Pablo Martin, Enrique Castro, Julio Puerta
	Triangularity and Ellipticity effects on low-vorticity non-linear collisional diffusion in tokamaks
P4.060	Y.R.Martin, J.B.Lister
	Current quench time in TCV disruptions
P4.061	W.A. Cooper, J.P. Graves, S.P. Hirshman, P. Merkel
	Three-Dimensional Free-Boundary Anisotropic Pressure Equilibria
P4.062	A. Macor, P. Buratti, J. Decker, D. Elbeze, X. Garbet, M. Goniche, P. Maget, C. Nguyen, R. Sabot, J.L. Segui, F. Zonca
	Fast particle triggered modes experimental investigation of Electron Fishbones on TORE SUPRA
P4.063	P. Rodrigues, J. P. S. Bizarro
	Noniterative equilibria reconstruction without up-down symmetry
P4.064	R.G.L. Vann, L.Appel, P.J. Denner, M.P. Gryaznevich, M.K. Lilley, R. Martin, S.D. Pinches, S.E. Sharapov
	Modelling observations of mode polarisation from MAST
P4.065	J. P. S. Bizarro, P. Rodrigues
	Grad-Shafranov equilibria with negative core toroidal current vs. experimental data
P4.066	M.J. Windridge, T.C. Hender, G. Cunningham, J.B. Lister, V. Lukash, R. Khayrutdinov, V. Dokuka
	MAST Plasma Response Investigations using DINA-CH
P4.067	R. Ikezoe, T. Onchi, K. Murata, K. Oki, H. Shimazu, T. Yamashita, A. Sanpei, H. Himura, S. Masamune
	Effects of lowering aspect ratio on magnetic fluctuations in RFP
P4.068	A. Sanpei, S. Masamune, R. Ikezoe, T. Onchi, K. Murata, K. Oki, H. Shimazu, T. Yamashita, H. Himura
	Neoclassical Equilibrium in a Low-Aspect Ratio RFP Machine RELAX
P4.069	C.V. Atanasiu, A. Moraru, L.E. Zakharov
	The investigation of resistive wall modes in a diverted tokamak configuration

P4.070	M.K. Zedda, M. Camplani, B.Cannas, A.Fanni, P.Sonato, E.R. Solano
	Dynamic behaviour of type I and type III Edge localized modes in the JET tokamak
P4.071	S.E.Sharapov, F.M.Poli
	Magnetic turbulence associated with confinement changes in JET plasmas
P4.072	O.P. Fesenyuk, Ya.I. Kolesnichenko, A. Weller, A. Werner, Yu.V. Yakovenko
	Generation of kinetic Alfven waves by Non-conventional Global Alfven Eigenmodes
P4.073	F. Bombarda, B. Coppi, E. Paulicelli, G. Pizzicaroli, G. Ramogida, R. Rubinacci, F. Villone
	Plasma Position Control Strategies for Ignitor
P4.074	M.E. Puiatti, M. Agostini, A. Canton , S. Cappello, P. Innocente, R. Lorenzini, R.Paccagnella, P. Scarin, G. Spizzo, D. Terranova, M.Valisa
	High density limit in Reversed Field Pinches
P4.075	W. Suttrop, A. Herrmann, M. Rott, T. Vierle, U. Seidel, B. Streibl, D. Yadikin, O. Neubauer, B. Unterberg, E. Gaio, V. Toigo, P. Brunsell
	Design of in-vessel saddle coils for MHD control in ASDEX Upgrade
P4.076	D. Mueller, R. Raman, T.R. Jarboe, B.A. Nelson, M.G.Bell
	Coxaial Helicity Injection plasma start-up coupled to inductively driven sustainment on the National Spherical Torus Experiment
P4.077	T. Fehér, K. Gál, H. Smith, T. Fülöp, P. Helander
	Simulation of runaway electron generation during plasma shutdown by doped pellet injection
P4.078	M. Mattei, R. Albanese, A. Portone, G.Saibene, A.A.Sips
	ITER Plasma scenarios scaled from ASDEX-U and JET experimental data and their impact on ITER operational space
P4.079	G.W. Pacher, H.D. Pacher, A.S. Kukushkin, G. Janeschitz
	Iter Operating Windows with Varying Plasma-Facing Materials and Divertor Constraints
P4.080	J. Havlicek, J. Horacek
	Modelling of COMPASS tokamak PF coils magnetic fields
P4.081	Tsv. K. Popov, P. Ivanova, E. Benova, F. M. Dias, J. Stöckel, R. Dejarnac
	On the Interpretation of the Electron Part of the Langmuir Probe Characteristics in Tokamak Edge Plasma
P4.082	N. K. Hicks, W. Suttrop, J. Stober, S. Cirant, M. Maraschek, K. Behler, L. Giannone, G. Raupp, M. Reich, A.C.C. Sips, W. Treutterer
	Measurement of NTMs, Modulated ECRH Deposition, and Current Ramp-Up MHD Activity Using the Upgraded 1 MHz ECE Radiometer on ASDEX Upgrade
P4.083	M.A. Van Zeeland, M.S. Chu, T.C. Luce, C.C. Petty, J.H. Yu
	Spectrally Filtered Fast Imaging of Internal MHD Activity in the DIII-D Tokamak
P4.084	G. Bonheure, J. Mlynar, L. Bertalot, A. Murari, S. Popovichev , EFDA-JET contributors
	A novel method for tritium transport studies and its validation at JET
P4.085	M.A. Makowski, M. Brix, N. Hawkes
	Semi-Empirical Calibration Technique for the MSE Diagnostic on the JET and DIII-D Tokamaks

P4.086	V.A.Pisarev,E.Z.Gusakov,D.M.Grésillon
	Investigation of turbulence in magnetized toroidal plasma by correlative enhanced scattering diagnostics
P4.087	U.W. Nam, S.G.Lee, J.G.Bak, M.K.Moon, J.K.Cheon
	Data acquisition system of a four segmented position sensitive detector for an advanced X-ray imaging crystal spectrometer
P4.088	Hoon Kyun Na
	H_alpha monitor and multi-chord visible spectroscopy for KSTAR diagnostics
P4.089	M. K. Moon, J. K. Cheon, S. S. Desai, U. W. Nam, S. G. Lee, J. G. Bak
	Multi-segmented position-sensitive detector for X-ray imaging crystal spectrometer
P4.090	KS. Chung, HJ. Woo, M.J. Lee
	Effect of Recombination, Charge-Exchange and Ionization on the Deduction of Mach Numbers in flowing Magnetized Plasmas
P4.091	KS. Chung, HJ. Woo, T. Lho, M.J. Lee
	Transient SOL during the start-up of tokamak in divertor plasma simulator DiPS
P4.092	O. Marchuk, G. Bertschinger, W. Biel, E. Delabie, M.G. vonHellermann, R. Jaspers, D. Reiter
	A review of atomic data needs for active charge-exchange spectroscopy on ITER
P4.093	I. Mihaila, C. Costin, M.L. Solomon, G. Popa, C. Ionita, R. Starz, R. Schrittwieser, J. Rapp, N.J. Lopes-Cardozo, H.J van der Meiden, G.J. van Rooij
	Probe investigations of the Pilot-PSI plasma
P4.094	T.M. Biewer, Y. Andrew, K. Crombe, N.C. Hawkes, D.L. Hillis, C. Strege, KD. Zastrow, JET EFDA contributors
	Expanded Capability of the Edge Charge-Exchange Recombination Spectroscopy System on JET
P4.095	D.E.Kravtsov, V.F. Andreev, A.V. Sushkov
	Electron temperature measurements by the duplex multiwire proportional X-ray detector on T-10 tokamak
P4.096	J.G. Bak, S.G. Lee, E.M. Ka
	Performance test of vessel current monitors for KSTAR
P4.097	R.I. Pinsker, T.E. Evans, F.W. Baity, P.M. Ryan, J.C. Hosea
	Experiments on Minimizing ELM-induced Fast Wave Antenna Breakdown in DIII-D
P4.098	L.R. Baylor, T.C. Jernigan, S.K. Combs, P.B. Parks, T.E. Evans, M.E. Fenstermacher, R.A. Moyer, J.H.Yu
	ELMs Triggered from Deuterium Pellets Injected into DIII-D and Extrapolation to ITER
P4.099	D.Frigione, L.Garzotti, G.Kamelander, F.Köchl, H.Nehme, B.Pégourié
	Pellet Drift Modelling – Validation and ITER Predictions
P4.100	M .Irie, M.Kubo-Irie, FBX team
	LCDC The Local Cold and Dense Compress formed by the Injected Pellets and the MHD Instability in Reactor Level Tokamaks
P4.101	T.Seki, T.Mutoh, R.Kumazawa, K.Saito, H.Kasahara, S.Kubo, T.Shimozuma, Y.Yoshimura, H.Igami, H.Takahashi, Y.Nakamura, N.Ashikawa, S.Masuzaki, F.Shimpo, G.Nomura, C.Takahashi, M.Yokota, Y.P.Zhao, J.G.Kwak, A.Komori, O.Motojima, LHD Experimental Group
	ICRF mode-conversion heating and its application to long pulse discharge in LHD

P4.102	B. J. Ding, L. Z. Zhang, Y. L. Qin, J. F. Shan, F. K. Liu, M. Wang, L. G. Meng, D. X. Wang, J. Q. Feng, Y. X. Jie, Y. W. Sun, B. Shen, X. M. Wang, J. H. Ling, X. Gao, X. D. Zhang, G. L. Luo, Y. P. Zhao, B. N. Wan, J. G. Li
	Coupling LHW Power to Plasma by Gas Puffing in HT-7
P4.103	V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin, V.I. Batkin, A.V. Burdakov, V.S. Burmasov, I.A. Ivanov, M.V. Ivantsivsky, K.N. Kuklin, K.I. Mekler, S.V. Polosatkin, S.S. Popov, A.F. Rovenskikh, A.A. Shoshin, N.V. Sorokina, S.L. Sinitsky, Yu.S. Sulyaev, Yu.A. Trunev, L.N. Vyacheslavov, Ed.R. Zubairov
	First experiments on neutral injection in multimirror trap GOL-3
P4.104	G.Kamelander, D.Frigione, L.Garzotti, F.Köchl, H.Nehme, B.Pégourié
	Modelling of the Pellet Rocket Acceleration Effect
P4.105	K. A. Avramides, O. Dumbrajs, S. Kern, I. Gr. Pagonakis, J. L. Vomvoridis
	Mode selection for a 170 GHz, 1 MW Gyrotron
P4.106	I. Miroshnikov, I. A. Sharov, V. Yu. Sergeev, N. Tamura, B. V. Kuteev, O. A. Bakhareva, D. M. Ivanova, D. Kalinina, V. M. Timokhin, K. Sato, S. Sudo
	Study of Pellet Clouds in LHD via 2-D Spectroscopy Imaging
P4.107	F. Louche, P. Dumortier, A. Messiaen, P. Tamain
	Recent Progress in 3D Electromagnetic Modeling of the ITER ICRH Antenna
P4.108	A.I. Meshcheryakov, A.E. Morozov, A.A. Golikov
	Peculiarities of Propagation and Damping of Fast Magnetosonic Waves in Hydrogen Plasma in the L2-M Stellarator
P4.109	E. Yatsuka, D. Sakata, K. Kinjo, S. Tanaka, J. Morikawa, Y. Ogawa
	Excitation and Propagating of Electron Bernstein Waves in the Internal Coil Device Mini-RT
P4.110	A. Köhn, B. Birkenmeier, H. Höhnle, E. Holzhauer, W. Kasparek, M. Ramisch, U. Stroth
	Microwave heating and toroidal currents in the torsatron TJ-K
P4.111	R.R. Parker, J.R. Wilson, P.T. Bonoli, R.W. Harvey, A.E. Hubbard, A. Ince-Cushman, JS. Ko, O. Meneghini, M. Porkolab, J.E. Rice, A.E. Schmidt, S.D. Scott, S. Shiraiwa, G.M. Wallace, J.C. Wright
	Current Profile Control Using LHCD in Alcator C-Mod
P4.112	M.X.Chen, C.Y.Liu, B.Wu
	The Economic Analysis of the Compact Fusion-Fission Hybrid Reactor
P4.113	V. Bailescu, G. Burcea, N. Balan, G. Dinuta, G. Serban, C.P.Lungu, A.M.Lungu, M.Rubel, P.Coad, L.Pedrick, R. Handley
	Inconel tiles coated with beryllium by thermal evaporation
P4.114	J.C. Wright, P.T. Bonoli, E. Valeo, C.K. Phillips, M. Brambilla, R. Bilato
	The importance of the effects of diffraction and focusing on current deposition of lower hybrid waves
P4.115	LG. Eriksson, T. Hellsten, K. Holmström, T. Johnson, J. Brzozowski, F. Nave, J. Ongena, KD. Zastrow
	Simulation of Fast Ion Contribution to Toroidal Rotation in ICRF Heated JET Plasmas
P4.116	I. Loupasakis, S.D. Moustaizis, P. Lalousis
	MHD computations for plasma trapping in open magnetic field devices for high neutron flux production
D4 117	A Sid M Balthoughs A Chargel M Smedi D Bahlaul D Dakhagha

P4.117 A. Sid, M. Bekhouche, A. Ghezal, M. Smadi, D. Bahloul, D. Debbache

	Weibel instability in a bi-maxwellian laser fusion plasma
P4.118	G. Schurtz, X. Ribeyre, J. Breil
	Bipolar shock ignition studies in the HiPER context
P4.119	K. A. Flippo, E. d'Humières, S. A. Gaillard, M. Schollmeier, J. Rassuchine, D. C. Gautier, Y. Sentoku, R. P. Johnson, J. Kline, F. Nürnberg, K. Harres, T. Shimada, M. Roth, T. E. Cowan, B. M. Hegelich, J. C. Fernández
	Efficient Proton Beam Generation from Novel Flat-Top Cone Targets Relevant for Fast Ignition Fusion
P4.120	K. Mima, H. Nagatomo, T. Johzaki, H. Sakagami, T. Nakamura
	Advanced target design for FIRX-I with the integrated code FI3
P4.121	S. G. Bochkarev, V. Yu. Bychenkov, K. I. Popov, W. Rozmus, R. D. Sydora
	Charged particle acceleration in vacuum by ultra-strong laser pulses
P4.122	A. Blaževi, A. Frank, M. Günther, K. Harres, T. Heßling, D.H.H. Hoffmann, R. Knobloch-Maas, F. Nürnberg, M. Roth, A. Pelka, G. Schaumann, A. Schökel, M. Schollmeier, D. Schuhmacher, J. Schütrumpf, H.G. Bohlen, W. von Oertzen
	Energy loss and charge states of Argon ions penetrating hot and dense C plasma
P4.123	A. Czarnecka, J. Krasa, L. Laska, P. Parys, M. Rosinski, L. Ryc, J. Wolowski
	Particular currents of ion species emitted from Fe 2 Si plasma produced by a Nd YAG laser
P4.124	M. Sherlock, S.Rose
	Interaction of Deuterium Beams with Dense Tritium Targets
P4.126	A.Schiavi
	Interpretation of laser-produced ion beam diagnostics using the PTRACE code
P4.127	M. Roth, M. Schollmeier, S. Becker, M. Geissel, K.A. Flippo, A. Blazevic, F. Grüner, K. Harres, F. Nuernberg, P. Rambo, J. Schreiber, J. Schüttrumpf, J. Schwarz, B. Atherton, M. Hegelich, D. Habs
	Beam Control and Transport of Laser-Accelerated Protons
P4.128	A.A.Andreev, J.Limpouch, K.Yu.Platonov
	Laser acceleration of light ions in shaped mass-limited multi-species targets
P4.129	A.Flacco, F.Sylla, N.Venkatakrishnan, M.Veltcheva, T.Desai, D.Batani, V.Malka
	Ion acceleration with ultra-high contrast laser pulses
P4.130	B. M. Hegelich, L. Yin, B. Albright, W. Daughton, K. A. Flippo, C. Gautier, A. Henig, R. Johnson, D. Kiefer, S. Letzring, R. Shah, J. Schreiber, T. Shimada, J. C. Fernandez, D. Habs
	Relativistic Particle Acceleration with Ultrahigh Power Lasers Towards Applications in Fusion and Medicine
P4.131	E. L. Clark, E. T. Gumbrell, C. R. D. Brown, L. Thornton, A. Moore, M. T. Girling, D. Lavender, D. J. Hoarty
	Electric Field Collimation of Intense Laser Accelerated Proton Beams
P4.132	J. Faure, C. Rechatin, R. Fitour, K. Ta Phuoc, A. Benismail, J. Lim, V. Malka
	Injection of electrons in plasma waves by non collinear colliding laser pulses
P4.133	J. Krasa, A. Velyhan, K. Jungwirth, E. Krousky, L. Laska, K. Rohlena, M. Pfeifer, J. Ullschmied
	Generation of MeV carbon and fluorine ions by sub-nanosecond laser pulses
P4.134	K. Cassou, F. Wojda, G. Genoud, M. Burza, A.Persson, CG. Wahlström, N.E. Andreev, B. Cros
	Plasma wave excitation in the wake of a short intense laser pulse guided in hydrogen-filled capillary tube

P4.135	K. I. Popov, V. Yu. Bychenkov, W. Rozmus, V. F. Kovalev, R. D. Sydora
	Mono-energetic ions from collisionless expansion of spherical multi-species clusters
P4.136	K. Schmid, L. Veisz, S. Benavides, F. Tavella, R. Tautz, D. Herrmann, A. Marcinkevicius, B. Hidding, M. Geissler, U. Schramm, J. Meyer-ter-Vehn, D. Habs, F. Krausz
	Monoenergetic Electron Acceleration Driven by a sub-10 fs OPCPA System
P4.137	M.C. Kaluza, J. Polz, O.J äckel, S. Pfotenhauer, B.Beleites, F.Ronneberger
	Optical probing of the rear-surface ion acceleration sheath
P4.138	O. Klimo, J.Psikal, J.Limpouch, V.T.Tikhonchuk
	Ultrathin foil irradiated by circularly polarized laser pulse as an efficient sources of quasi-monoenergetic ions
P4.139	P. Mora, Z. Chen, T. Grismayer, JC. Adam, A. Héron
	Electron kinetic effects in the plasma expansion into a vacuum and ion acceleration
P4.140	Parviz Zobdeh, R. Sedighi-Bonabi, H. Afarideh, R. Rezaei-Nasirabad
	Density Transition Effect on Electron Trapping and Field Propagation in LWFA
P4.141	R. Nuter, L. Gremillet, P. Combis, M. Drouin, E. Lefebvre, A. Flacco, V. Malka
	Electron heating and proton acceleration in ultraintense laser beam interacting with a pre-irradiated target.
P4.142	S. A. Gaillard, K. A. Flippo, M. Schollmeier, F. Nürnberg, J. S. Cowan, D. C. Gautier, K. Harres, M. Roth, B. M. Hegelich, J. C. Fernandez, W. P. Leemans, T. E. Cowan
	Calibration of Radiochromic Film Gafchromic MD-55, HD-810 and HS for proton energies of ~ 5 to 20 MeV
P4.143	S. Karsch, J. Osterhoff, A.Popp, Zs. Major, R.Hörlein, T.P. Rowlands-Rees, S. Rykovanov, M.Geissler, M.Fuchs, B.Marx, R.Weingartner, F.Grüner, U.Schramm, D.Habs, J.Vieira, R.A.Fonseca, L.O.Silva, F.Krausz, S.M.Hooker
	Steering of stable laser-accelerated electron beams by controlling the laser parameters
P4.144	S.P.D. Mangles, A.G.R. Thomas, C. Bellei, A.E. Dangor, C. Kamperidis, S. Kneip, S.R.Nagel, L. Willingale, Z. Najmudin,
	Self-guided wakefield experiments driven by petawatt class ultra-short laser pulses
P4.145	Sargis Ter-Avetisyan, Matthias Schnürer, Robert Polster, Peter V. Nickles Wolfgang Sandner
	Novel use of a quadrupole magnet lens system for collimation and monochromatisation of laser accelerated proton bursts
P4.146	Zs. Major, J.Osterhoff, A.Popp, T.P. Rowlands-Rees, R. Hörlein, B.Marx, M.Fuchs, R. Weingartner, F.Grüner, K.Schmid, L.Veisz, U.Schramm, D.Habs, F.Krausz, S.M.Hooker, S.Karsch
	Generation of stable laser-accelerated electrons from a gas-filled capillary
P4.147	F. Peano, J. Vieira, R. Mulas, G. Coppa, L. O. Silva
	All-optical trapping and acceleration of heavy particles
P4.148	J.L.Martins, F.Peano, R.A.Fonseca, L.O.Silva
	PIC modeling of the radiation processes in the laser-wakefield self-injection process
P4.149	J. Psikal, V.T. Tikhonchuk, J. Limpouch
	Ion acceleration by relativistically intense laser pulses with a large incidence angle
P4.150	J.Vieira, F.Fiúza, R.A.Fonseca, L.O.Silva
	Non-linear longitudinal laser dynamics in the laser wake field accelerator

P4.151	M.R.Islam, B.Ersfeld, A.Reitsma, D.A.Jaroszynski
	Electron trapping in moving void of laser-plasma interaction
P4.152	M.Shoucri
	Numerical Simulation of Wake-Field Acceleration using Two Counter-Propagating Laser Pulses
P4.153	R.A. Bendoyro, C. Russo, N.C. Lopes, C.E. Clayton, F. Fang
	Plasma waveguides for electron accelerators using discharges in a structured gas cell
P4.154	S. Cavallaro, D. Margarone, L.Torrisi
	Charge and energy discrimination of ions in CR39 track detectors by diameter-depth correlations
P4.155	S. F. Martins, R. A. Fonseca, W. Lu, W. B. Mori, L. O. Silva
	Full-PIC 3D simulations of LWFA in boosted frames for long propagation distances
P4.156	P.R.Levashov, V.S.Filinov, M.Bonitz, G.Schubert, A.V.Filinov, H.Fehske, V.E.Fortov
	Tomographic Representation of Quantum Mechanics for Calculation of Electrical Conductivity of Dense Plasma
P4.157	N. Mizuno, K. Sekine, Y. Nejoh
	Study of discharge oscillations in Hall thrusters
P4.158	O.S.Vaulina, X.G.Adamovich, O.F.Petrov, V.E.Fortov
	Transport processes in dusty plasma of RF-discharge
P4.159	R.I. Golyatina, S.A. Maiorov
	Modeling of plasmas structure near electrode layer with magnetic field
P4.160	S.A. Maiorov, A.A. Shcherbakov
	Coulomb microfield distribution in an ion cluster
P4.161	S. Celestin, N. Liu, A. Bourdon, V. P. Pasko
	Study of the Efficient Photoionization Model 3-Group SP3 for the Modeling of Streamer Propagation
P4.162	P. Kevrekidis, V. Koukouloyannis, D. Frantzeskakis, I. Kourakis
	Discrete breathers, multibreathers and vortices in hexagonal dust crystals
P4.163	S.A. Maiorov, A.A. Shcherbakov
	Void formation modeling in two-component dust structure
P4.164	W. F. El-Taibany, I. Kourakis, M. Wadati
	Modulational instability of low frequency electrostatic waves in multi-dust-component complex plasmas
P4.165	I. Kourakis, V. Koukouloyannis, B. Farokhi, P. K. Shukla
	Nonlinear excitations in Debye crystals a survey of theoretical results
P4.166	S.A. Kamneva, L.N. Khimchenko, V.P. Budaev, B.V. Kuteev
	Surface morphology, X-ray crystal analysis and electron emission properties of fractal films from tokamak T-10
P4.167	J. Puerta, E. Castro, P. Martin, A. Moller
	Extended Treatment for the Drift Instability Grow rates in Non-ideal Inhomogeneous Dusty Plasmas
P4.168	M. Wolter, M. Stahl, C. Terasa, H. Kersten
	Spatially Resolved Measurement of the Energy Influx in an RF Plasma

P4.169	O.S.Stoican
	Study of the plasma rf absorption using a noise generator
P4.170	L. Torrisi, G. Mondio, D. Margarone, T. Serafino
	Laser and Electron Beams physical analyses applied to the comparison between two Silver Tetradrachm Greek Coins
P4.171	M. K. Ko, E. Y. Yun, R. M. Mansur, Y. S. Mok, H. J. Lee
	Reduction of Toluene Vapour by a Hybrid Technology of Plasma and Catalyst
P4.172	Ph. G.Rutberg, G.V. Nakonechny, S.A. Kuschev, A.V. Pavlov, S.D. Popov, A.V.Surov
	Plasma torch optical and spectral diagnostic of arc plasma generators of alternating current
P4.173	R. Foest, J. Schäfer, A. Quade, A. Ohl, KD.Weltmann
	Miniaturized Atmospheric Pressure Plasma Jet APPJ for Deposition of SiOx films with different Silicon-organic Compounds – A comparative Study
P4.174	Sun-TaekLim, Jung-HyunCho, Sung-RyulHuh, Gon-HoKim
	Improvement of Field Emission Properties of Plasma Ion Irradiated Multi-Walled Carbon Nanotubes
P4.175	T. Lho, M. Jung, S.J. Yoo, D.C. Kim, B.J. Lee, M.H. Cho
	Effects of Neutralizer Geometries on the Hyper-Thermal Neutral Beam Generation
P4.176	V. Lisovskiy, N. Kharchenko, V. Yegorenkov
	Radial structure of the longitudinal combined RF/DC discharges
P4.177	I.F. Shaikhislamov
	MHD Instability of the near Earth Magnetotail
P4.178	J. Vranjes, S. Poedts
	Coupling of drift and ion cyclotron modes in solar atmosphere
P4.179	K.M. Gillespie, D.C. Speirs, K. Ronald, A.D.R. Phelps, S.L. McConville, A.W. Cross, R. Bingham, I. Vorgul, R.A. Cairns, B.J. Kellett
	3D PiC code simulations of a scaled laboratory experiment investigating AKR
P4.180	L. Gargaté, R. A. Fonseca, R. Bingham, L. O. Silva
	Surfatron acceleration and solar energetic particle production in coronal shocks
P4.181	L.P. Babich, E.I. Bochkov, I.M. Kutsyk
	Source of runaway electrons in thundercloud field stimulated by cosmic ray showers
P4.182	M.E. Dieckmann, G. Rowlands, P.K. Shukla
	The plasma filamentation instability in one dimension
P4.183	M.Taguchi
	Basic Equations for RF-Current Drive Theory in Turbulent Plasma
P4.184	O.Agren, V.E.Moiseenko, A, Hagnestal
	Jeans Theorem and the Number of Independent Constants of Motion
P4.185	R.A. Cairns, I.Vorgul, R. Bingham, B.J.Kellett, K.Ronald, D.C. Speirs, S.L.McConville, K.M. Gillespie, A.D.R. Phelps
	Properties of cyclotron maser emission in inhomogeneous plasma

P4.186	S.I. Tkachenko, V.M. Romanova, T.A. Shelkovenko, A.E. Ter-Oganesyan, A.R. Mingaleev, S.A. Pikuz
	Inhomogeneity of plasma parameters upon electrical wire explosion
P4.187	T. Sunn Pedersen, J. Berkery, A. H. Boozer, R. G. Lefrancois, Q. R. Marksteiner, M. S. Hahn, P. W. Brenner, B. Durand de Gevigney
	Pure electron plasmas in the CNT stellarator
P4.188	V.I. Arkhipenko, Z. Gusakov, L.V. Simonchik, F. Truhachev
	Anomalous reflection control by the pump frequency modulation
P4.189	S. Tsikata, N. Lemoine, V.A. Pisarev, D.M. Grésillon
	A collective scattering device for observation of a Hall thruster plasma
P4.190	M.Tagger,H.Méheut,P.Varnière,J.Rodriguez
	MHD models of Quasi-Periodic Oscillations in accretion disks
P4.191	R. Marchand, JJ. Berthelier
	Kinetic modelling of particle distribution measurements in DEMETER
P4.192	P. V. Bakharev, A. V. Kudrin, T. M. Zaboronkova
	Whistler eigenmodes of magnetic flux tubes in a magnetoplasma
P5.001	T. Koskela, O. Asunta, V. Hynönen, T. Johnson, T. Kurki-Suonio, J. Lönnroth, V. Parail, M. Roccella, G. Saibene, A. Salmi, S. Sipilä
	Alpha particle orbits in a locally perturbed ITER 3D magnetic field
P5.002	T.Lunt, O.Waldmann, G.Fussmann
	Laser induced fluorescence measurements in an argon plasma in front of a tungsten target under oblique incidence
P5.003	T.Morisaki, H.Tsuchiya, H.Zushi, T.Ryokai, R.Bhattacharyay, S.Masuzaki, H.Yamada, A.Komori, O.Motojima
	Two Dimensional Measurements of Edge Density Fluctuations in LHD heliotron and CPD spherical tokamak
P5.004	V.B. Lazarev, Ya.V. Gorbunov, S.V. Mirnov
	Investigation of lithium distribution in the SOL of T-11M tokamak with lithium limiter
P5.005	V. Bobkov, F. Braun, JM. Noterdaeme
	Calculations of Near-Fields of ICRF Antenna for ASDEX Upgrade
P5.006	V.I.Dudin, I.V.Morozov, V.P.Korchagin
	Gas Discharge Chamber of "Plasma Focus" Type with Ceramic Inserts on Electrodes
P5.007	B. Rasul, F. Zappa, N. Endstrasser, A. Kendl, J.D. Skalny, Z. Herman, P. Scheier, T.D. Märk
	Ion-surface collisions relevant for fusion devices CD2 , CD3 and CD4 on beryllium and tungsten films
P5.008	F. Schwander, G. Chiavassa, G. Ciraolo, X. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, E. Serre
	Symmetry and evolution of radiative patterns in simulations of the tokamak edge plasma
P5.009	M. F. Heyn, I. B. Ivanov, S. V. Kasilov, W. Kernbichler, M. Mulec
	Quasi-linear modeling of the interaction of resonant magnetic field perturbations with a tokamak plasma
P5.011	Y. Igitkhanov, I. Landman, B. Bazylev, G. Janeschitz
	Attenuation of Plasma Flow in Detached Divertor

P5.012	T.K.Soboleva, I.F.Potapenko, S.I.Krasheninnikov
	Time dependent solutions of collisional electron kinetic equation
P5.013	T. Happel, T. Estrada, L. Cupido, C. Hidalgo, E. Blanco
	Radial propagation of poloidal plasma velocity changes in the stellarator TJ-II measured by reflectometry
P5.014	T. Hellsten, T. Johnson
	Neoclassical Electric Field in Presence of Large Gradients and Particle Losses
P5.015	T.P. Kiviniemi, J.A. Heikkinen, S.J.J anhunen, S. Leerink, M. Nora, F. Ogando
	Gyrokinetic full-f particle simulation of edge heat transport
P5.016	T.S. Hahm, P.H. Diamond, O.D. Gurcan, W.X. Wang, G. Rewoldt, C.J. McDEvitt
	Roles of Curvature Driven Momentum Pinch and Residual Stress in Intrinsic Rotation
P5.017	T. Tokuzawa, N. Tamura, R. Sakamoto, K. Tanaka, S. Inagaki, K. Kawahata, I. Yamada
	Particle Transport Characteristics around Expanding Static Magnetic Island in the Large Helical Device
P5.018	V.I. Vargas, D. López-Bruna, J. García, A. Fernández, A. Cappa, J. Herranz, F. Castejón
	ECH power dependence of electron heat diffusion in ECH plasmas of the TJ-II stellarator
P5.019	V.P. Budaev
	The log-Poisson model of edge plasma turbulence in fusion devices
P5.020	V. Rozhansky, E Kaveeva, M. Tendler
	Interpretation of the observed radial electric field inversion in TUMAN-3M tokamak during MHD-activity
P5.021	V.V. Nemov, S.V. Kasilov, W. Kernbichler, G.O. Leitold
	Poloidal drift of trapped particle orbits in real-space coordinates
P5.022	W.M. Solomon, K.H. Burrell, A.M. Garofalo, S.M. Kaye, R.E. Bell, R.V. Budny, J.S. deGrassie, B.P. LeBlanc F.M. Levinton, J.E. Menard, C.C. Petty, G.L. Jackson, H. Reimerdes, S.A. Sabbagh, E.J. Strait, H. Yuh
	Comparison of Momentum Transport Between DIII-D and NSTX
P5.023	W. X. Wang, T.S. Hahm, M. Adams, S. Ethier, S. M. Kaye, W. W. Lee, G. Rewoldt, W. M. Tang
	Relationship between Toroidal Momentum and Heat Transport in Tokamaks
P5.024	Y. Li, J. Li, X.D. Zhang, T. Zhang, S.Y. Lin
	Small scale turbulence experiment in HT-7 tokamak
P5.025	Yong-Su Na, L.Terzolo, J.Y.Kim
	Time-dependent Simulations of the Hybrid Operation Mode Including the Neoclassical Tearing Mode Activity in KSTAR and Its Projection to DEMO
P5.026	Z. Cui, Y. Zhou, W. Li, B. Feng, P. Sun, Y. Liu, Y. Huang, W. Hong, Q. Yang, X. Ding, X. Duan
	Observation of Impurity Accumulation during Density Peaking in HL-2A Plasma
P5.027	D. Kalupin, J. F. Artaud, D. Coster, S. Glowacz, S. Moradi, G. Pereverzev, R. Stankiewicz, M. Tokar, V. Basiuk G. Huysmans, F. Imbeaux, Y. Peysson, LG. Eriksson, M. Romanelli, P. Strand
	Construction of the European Transport Solver under the European Integrated Tokamak Modelling Task Force
P5.028	Z. Lin, A. Bierwage, S. Briguglio, L. Chen, M. S. Chu, W. Heidbrink, Y. Nishimura, D. Spong, G. Vlad, R. E Waltz, W. L. Zhang, F. Zonca
	Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

P5.029	A. Salmi, V. Parail, T. Johnson, C. S. Chang, S. Ku, G. Park, JET EFDA contributors
	Numerical study of neoclassical particle losses with static 2D electric fields
P5.030	B Scott
	Fully Nonlinear Electromagnetic Gyrokinetic Computations
P5.031	B Scott
	Rotation in the Presence of Turbulence in Large Tokamaks
P5.032	G.V. Pereverzev
	Properties of numeric schemes for stiff transport models
P5.033	G. Breyiannis, D. Valougeorgis
	Lattice kinetic Schemes in Fusion Plasmas
P5.034	G.M.D.Hogeweij, F.Imbeaux, F.Köchl, X.Litaudon, V. Parail, A.C.C. Sips, for the EU Integrated Tokamak Modelling Task Force
	Simulation of the current ramp-up phase of ITER discharges
P5.035	M. Gobbin, F. Sattin, S.C. Guo, L.Marrelli, S. Cappello
	Numerical studies of particle transport in RFX-mod low chaos regimes
P5.036	M. Nora, J.A. Heikkinen, S.J. Janhunen, T.P Kiviniemi, S. Leerink, F. Ogando
	Derivation of gyrokinetic equations for full-f particle simulation with polarization drift
P5.037	R.V. Shurygin, A.A. Mavrin, A.V. Melnikov
	Computation of radial electric field in the turbulent edge plasma of the T-10 tokamak
P5.038	S. V. Neudatchin
	New interpretation of slow heat pulse propagation during ITB formation in Tokamaks
P5.039	T.T. Ribeiro, B. Scott
	Drift wave vs. interchange turbulence geometrical effects on the ballooning threshold
P5.040	J. Vranjes, S. Poedts
	Drift and acoustic modes in radially and axially inhomogeneous plasma
P5.041	M. Jucker, V.P. Pavlenko
	Large Scale Magnetic Field Generation via Modulation Instability in Electron Drift Turbulence
P5.042	P. Martin, E. Castro
	Triangularity and Ellipticity Effects on Ware Pinch
P5.043	F. Schwander, K.G. McClements, A. Thyagaraja
	Rotation driven by fast ions in tokamaks
P5.044	J. Manickam
	Predictive Stability Analysis
P5.045	F. Sartori, P. Lomas, F. Piccolo, M.K. Zedda
	Synchronous ELM Pacing at JET using the Vertical Stabilisation Controller
P5.046	S.Nowak, E.Lazzaro, C.Marchetto
	NTM avoidance through control of island rotation by external torque exploring the role of the polarisation

current

P5.047	G. Marchiori, L. Marrelli, P. Piovesan, A. Soppelsa, F. Villone
	Comparison between an experimentally estimated and a finite element model of RFX-mod MHD active control system
P5.048	A.Ishida, L.C.Steinhauer, Y.K.M.Peng
	Formalism for multi-fluid magnetohydrodynamics equilibrium with strong flows and application to CT and ST
P5.049	P. L. Garcia-Martinez, R. Farengo
	Flux Core Spheromak Formation from an Unstable Screw Pinch
P5.050	M.C. Zarnstorff, N. Pomphrey, G. Fu
	Edge Pedestal Stability in NCSX
P5.051	D.Yu. Eremin
	Unstable Drift-Kinetic Alfven Modes in the Lowest Part of the Alfvenic Spectrum of Optimized Stellarators
P5.052	N Ben Ayed, K. G. McClements, A. Thyagaraja
	Alfven eigenmodes in magnetic X-point configurations with strong longitudinal fields
P5.053	S. Wiesen, V. Parail, G. Corrigan, W. Fundamenski, J. Lonnroth
	Progress on integrated modelling of type-I ELMs at JET with COCONUT
P5.054	A. Perona, LG. Eriksson, D. Grasso
	Generation of suprathermal electrons during magnetic reconnection
P5.055	C. Di Troia, S. Briguglio, G. Calabrò, A. Cardinali, F. Crisanti, G. Fogaccia, M. Marinucci, G. Vlad, F. Zonca
	Investigation of fast ion behaviors in burning plasmas via Ion Cyclotron Resonance Heating
P5.056	F. Zonca, L. Chen
	Self-consistent energetic particle nonlinear dynamics due to shear Alfvén wave excitations
P5.057	I.S. Landman, G. Janeschitz
	Calculation of Poloidal Magnetic Field in Tokamak Code TOKES
P5.058	N. Pomphrey, A. Boozer, A. Brooks, M. Zarnstorff
	Analysis Methods for Trim Coils in NCSX
P5.059	S. Nishimura, S. Benkadda, M. Yagi, SI. Itoh, K. Itoh
	Rotation of Magnetic Islands with Micro-Scale Fluctuations
P5.060	E. D. Fredrickson, N. A. Crocker, D. Darrow, N. N. Gorelenkov, W. W. Heidbrink, S. Kubota, F. M. Levinton, D. Liu, S. S. Medley, M. Podesta, H. Yuh, R. E. Bell
	Toroidal Alfvén Eigenmode Avalanches in NSTX
P5.061	J. Vranjes, H. Saleem, S. Poedts
	Magnetic field generation at ion acoustic time scale
P5.062	J. P. Graves, I. Chapman, S. Coda, LG. Eriksson, T. Johnson
	Sawtooth control mechanism using counter current propagating ICRH in JET
P5.063	H.R. Koslowski, Y. Liang, E. Delabie, TEXTOR-team
	Investigation of resonant and non-resonant plasma momentum braking using the Dynamic Ergodic Divertor on

TEXTOR

P5.064 J. Scheffel, A. Mirza Pressure driven resistive modes in the advanced RFP P5.065 L. Marrelli, P. Zanca, R. Paccagnella, P. Piovesan, G. Marchiori, L. Novello, A. Soppelsa Advances in MHD mode control in RFX-mod P5.067 D.Kh.Morozov, A.A.Pshenov, A.B.Mineev Improvement of start-up in tokamaks by modulation of ECR source. P5.068 J.F. Artaud, V.Basiuk, G. Giruzzi, X. Litaudon Simulation of present-day Tokamak Discharges Mimicking a Fully non-Inductive Burning Plasma P5.069 O. Asunta, T. Kurki-Suonio, T. Tala, S. Sipilä, R. Salomaa Fusion Alpha Performance in Advanced Scenario Plasmas P5.070 M. Salewski, H. Bindslev, V. Furtula, S.B. Korsholm, F. Leipold, F. Meo, P.K. Michelsen, S.K. Nielsen Comparison of CTS Signals due to Auxiliary Heating in ITER P5.071 S.E. Grebenshchikov, I.Yu. Vafin, A.I. Meshcheryakov Procedure for Reconstructing the Electron Enregy Distribution Function from the Soft X-Ray Spectrum P5.072 P. Acedo, P. Pedreira, A.R. Criado, H. Lamela, M. Sánchez, J. Sánchez Systematic Study of the Sources of Error in the High Spatial Resolution Two-Color Laser Interferometer for the **TJ-II** Stellarator P5.073 G. Serianni, N. Pomaro, R. Pasqualotto, M. Spolaore, M. Valisa The diagnostic system for the characterisation of ITER Neutral Beam Injectors P5.074 G.Grossetti, C.Sozzi, E.De La Luna, D.Farina, J.Fessey, L.Figini, S.Garavaglia, S.Nowak, P.Platania, A.Simonetto, M.Zerbini Bayesian approach to data validation of the oblique ECE diagnostic at JET P5.075 V.V. Plyusnin, L. Jakubowski, J. Zebrowski, H. Fernandes, C.Silva, P. Duarte, K. Malinovski, M. Rabinski, M.J. Sadowski Detection of Runaway Electrons Using Cherenkov-type Detectors in the ISTTOK Tokamak. P5.076 G. Petravich, D. Dunai, G. Anda, J. Sárközi, S. Zoletnik, B. Schweer First measurements with the re-installed accelerated Lithium beam diagnostics on TEXTOR P5.077 S.K. Nielsen, H.Bindslev, S.B. Korsholm, F. Leipold, F. Meo, J.W. Oosterbeek, M. Salewski, M. Vervier, G. Van Wassenhove, E. Westerhof, P. Woskov Anisotropic fast-ion velocity distributions measured by collective Thomson scattering in the TEXTOR tokamak P5.078 R. C. Wolf, R. König, W. Biel, J. Cantarini, M. Endler, H.-J. Hartfuß, D. Hildebrandt, M. Hirsch, G. Kocsis, P. Kornejew, M. Laux, M. Otte, E. Pasch, A. Pospieszczyk, S. Recsei, W. Schneider, B. Schweer, J. Svensson, V. Szabó, H. Thomsen, A. Weller, A. Werner, M.Y. Ye, S. Zoletnik Diagnostic Challenges for the Optimized Stellarator Wendelstein 7-X P5.079 G. Por, D. Bódizs, Sz. Czifrus, G. Kocsis, K. Nagy, J. Pálfalvi, T. Pázmándi, A. Szappanos, S. Zoletnik Radiation damage in Video Diagnostic Device for Wendelstein 7-X P5.080 P.V.Savrukhin, E.V.Popova, D.V.Sarichev

	Measurements of the small-scale plasma perturbations during sawtooth crash and disruption instability in the T- 10 tokamak plasma
P5.081	W. Schneider, M. Turnyanskiy, F.V. Chernyshev, M. Kick, T. Richert
	Neutral Particle Diagnostics at MAST with a Compact Energy Analyser and Comparison with Charge Exchange Recombination Spectroscopy
P5.082	M. Kubo-Irie, M.Irie, FBX team
	Phase Imaging Passive Holography on LCDC the Local Cold and Dense Compress in Tokamaks
P5.083	A. Klein, D.Testa, J. Snipes, A. Fasoli, JET-EFDA Contributors
	Toroidal mode number analysis of degenerate Alfvén Eigenmodes in the active MHD spectroscopy on JET
P5.084	M. R. Turnyanskiy, A. J. Akers, G. Cunningham
	Off axis NBCD experiments on MAST
P5.085	S.J. Wukitch, M. Porkolab, Y. Lin, P.T. Bonoli, J.C. Wright, the Alcator C-Mod Team
	Recent ICRF Results in Alcator C-Mod
P5.086	G.J.Lei, G. W. Zhong, J.Y. Cao, J.Rao, B.Li, S. F. Jiang, D. L.Lu, G.Q.Zou, J.F. Yang, H.Liu, X.M. Zhang, X.Y, Wang, J.X.Yang, G.Q.Zhang, L.M.Yu, T. Jiang, L.Li, K.Feng, Z.H.Kang, M.W.Wang, W.M.Xuan, L.Y.Yao, L.Y.Cheng, Z.Cao
	Neutral Beam Injection System and Preliminary Experiment on HL-2A
P5.087	T.Oikawa, D.J.Campbell, M.Henderson
	Heating and Current Drive Issues towards ITER Operations
P5.088	A. Mendes, L. Colas, A. Argouarch, S. Brémond, F. Clairet, C. Desgranges, A. Ekedahl, J.P. Gunn, G. Lombard, D. Milanesio, L. Millon, P. Mollard, D. Volpe, K. Vulliez
	Interaction of ITER-like ICRF antenna with Tore Supra plasmas insight from modelling.
P5.089	C. Tsironis, T. Samaras, L. Vlahos
	FDTD algorithm for the propagation of EC waves in hot anisotropic plasma
P5.090	A. Aïssi, F. André, F. Doveil
	New model of a travelling-wave tube
P5.091	B.H.Park, S.S.Kim, S.W.Yoon, J.Y.Kim
	Development of a Full Wave ICRF Code for KSTAR Plasma
P5.092	A.N.Saveliev
	Propagation and absorption of EM microwave beams in toroidal plasmas
P5.093	I. Chatziantonaki, L. Vlahos, C. Tsironis
	Propagation and absorption of EC waves in the presence of magnetic islands
P5.094	R. Bilato, M. Brambilla
	FELHS code for lower-hybrid launcher coupling and near fields
P5.095	R.Bilato,E.Poli,F.Volpe,R.Paccagnella,M.Brambilla
	ECCD Feasibility Study for RFX
P5.096	Yu.M. Aliev, M. Kraemer
	Mode conversion of non-axisymmetric modes in strongly non-uniform helicon-sustained plasma

P5.097	T. Bolzonella, L. Marrelli, A. Alfier, L. Carraro, P. Innocente, R. Pasqualotto, D. Terranova
	Insights on ohmic input power evaluation in the RFX-mod Reversed Field Pinch
P5.098	V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin, V.V. Belykh, A.V. Burdakov, V.S. Burmasov, I.A. Ivanov, M.V. Ivantsivsky, M.V. Kolosov, A.S. Krygina, K.N. Kuklin, K.I. Mekler, S.V. Polosatkin, S.S. Popov, A.F. Rovenskikh, A.A. Shoshin, N.V.S orokina, S.L. Sinitsky, Yu.S. Sulyaev, Yu.A. Trunev, L.N. Vyacheslavov, Ed.R. Zubairov
	Dynamics of electron distribution function in multiple mirror trap GOL-3
P5.099	R. Nazikian, M.E. Austin, H.L. Berk, R.V. Budny,G.Y. Fu, W.W. Heidbrink, G.J. Kramer, M.A. Makowski, G.R.M cKee, N.N. Gorelenkov, W.M. Solomon, E.J. Strait, M.A. VanZeeland, A.E. White, R.B. White
	N 0 Instability Driven by Counter-Injected Neutral Beam Ions in DIII-D
P5.100	E.M. Edlund, M. Porkolab, L. Lin, N. Tsujii, S.J. Wukitch, G.J. Kramer
	Reversed Shear Alfvén Eigenmodes in Alcator C-Mod During ICRF Minority Heating and Relationship to Sawtooth Crash Phenomena
P5.101	X.Q. Ji, Q.W. Yang, W. Deng, J. Zhou, B.B. Feng, B.S. Yuan, W.M. Xie, Y.Liu
	Tearing mode suppression by ECRH in the HL-2A tokamak
P5.102	L.J.Perkins,K.N.Lafortune,A.R.Miles,R.Betti
	Shock Ignition - A New Approach to High Gain/Yield Targets for the National Ignition Facility and Inertial Fusion Energy
P5.103	S. Kar, K. Markey, D.C Carroll, A.P.L. Robinson, R. Jafer, P. McKenna, P.Norreys, D. Neely, M. Zepf,
	Guided transport of hot electron beam inside a solid density plasma
P5.104	I.V. Timofeev, A.V. Terekhov, K.V. Lotov
	Computer simulation of relativistic electron beam relaxation in plasma
P5.105	A. Bret, L. Gremillet, D. Bénisti, E. Lefebvre
	Exact relativistic kinetic theory of an electron beam-plasma system hierarchy of the competing modes in the system parameter space
P5.106	S.Atzeni, A.Schiavi, J.R.Davies
	Stopping and scattering of relativistic electrons in high density plasmas for fast ignition studies
P5.107	A. G. Mordovanakis, J. Easter, M. G. Haines, B. Hou, P. E. Masson-Laborde, G. Mourou , J. Nees, W. Rozmus, K. Krushelnick
	Scaling of Hot Electron Temperature in the Relativistic Regime using a High Repetition Rate Laser
P5.108	C. Bellei, S. Nagel, S. Kar, A. Henig, S. Kneip, C. Palmer, A. Saevert, L. Willingale, D. Carroll, B. Dromey, J. Green, K. Markey, P. Simpson, R. J. Clark, D. Neely, A. E. Dangor, S. P. D. Mangles, P. McKenna, P. A. Norreys, J. Schreiber, M. Zepf, M. Kaluza, K. Krushelnick, Z. Najmudin
	Polarization Properties of Transition Radiation and Observation of Recirculating Currents from High-Intensity Laser Solid Interactions
P5.109	J.J. Santos, D. Batani, P. McKenna, C. Rousseaux, S.D. Baton, F. Dorchies, A. Dubrouil, C. Fourment, S. Hulin, P. Carpeggiani, M. Veltcheva, M. Quinn, E. Brambrink, M. Koenig, F. Perez, M. Rabec Le Gloahec
	Fast electron propagation in high density plasmas created by shock wave compression relevant to fast ignition
P5.110	J. Pasley
	Simulations of the motion of cone material and its effects upon ignition and burn

P5.111	K.A. Tanaka, H. Habara, R. Kodama, K. Kondo, T. Tanimoto, T. Yabu-uchi, K. Mima, T. Notimasu, K. Nagatomo, K. Nagai, A. Lei
	Increase of hot electron production and its behavior under strong static potential
P5.112	L. Gremillet, D. Bénisti, M. Drouin, E. Lefebvre, F. Perez, S. D. Baton
	Coupling of relativistic laser pulses with cone-guided targets
P5.113	L.Romagnani, P.A. Wilson, K.Quinn, B.Ramahkrishna, M.Borghesi, P.Antici, L.Lancia, J.Fuchs, M.Amin, C.A.Pipahl, T.Toncian, O. Willi, M.Tampo, R.Kodama, R.J.Clarke, M.Notley
	Relativistic electron dynamics in high intensity laser matter interactions
P5.114	M. G. Haines, F.N. Beg, M. Wei, R.B. Stephens
	On the scaling of the hot electron temperature and laser absorption in fast ignition
P5.116	S.R. Nagel, C. Bellei, R.J. Clarke, R. Heathcote, A. Henig, M. Kaluza, S. Kar, S. Kneip, S.P.D. Mangles, K. Markey, C. Palmer, A. Sävert, J. Schreiber, P. Simpson, L. Willingale, M. Zepf, A.E. Dangor, Z. Najmudin
	Electron acceleration from solid targets
P5.117	Y. Sentoku, T. Johzaki, B. Chrisman, A. Kemp
	Numerical Modeling of Ultra-fast Heated Au Target by Intense Laser
P5.118	A.G.R. Thomas, R.G. Evans, S.J. Rose
	Particle-in-cell modelling of electron transport under Fast Ignition relevant conditions
P5.119	D. Batani, A.Aliverdiev, R. Dezulian, T.Vinci, A.Benuzzi-Mounaix, M.Koenig, V. Malka
	Hydrodynamics of Laser-Produced Plasmas Experiment and MULTI hydrocode Simulations
P5.120	F.Fiuza, J.R.Davies, R.A.Fonseca, L.O.Silva
	Heat flux in solid targets irradiated by fast ignition laser beams
P5.121	H. Sakagami, T. Johzaki, H. Nagatomo, T. Nakamura, K. Mima
	Generation Control for Fast Electron Beam in Fast Ignition
P5.122	L.F. Ibañez, J Sanz
	Surface Current layer induced by Relativistic Electrons
P5.123	R. Redaelli, D. Batani, A.Morace, P.Carpeggiani, M. H. Xu, F. Liu, Y. Zhang, Z. Zhang, X. X. Lin, F. Liu, S. J. Wang, P. F. Zhu, L. M. Meng, Z. H. Wang, Y. T. Li, Z. M. Sheng, Z. Y. Wei, J. Zhang.
	Transport of Intense Laser-Produced Electron Beams in Matter
P5.124	Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, M. Chen, W. M. Wang, Q. Z. Yu, S. J. Wang, Z. H. Wang, Z. Y. Wei, Z. M. Sheng, J. Zhang
	Fast Electron Transport in High-Intensity Laser-Plasma Interactions
P5.125	J.J. Honrubia, M. Temporal, J. Badziak, S. Jablonsky
	Fast ignition of imploded fusion targets by ion beams
P5.126	H. Nishimura, D. Batani, Y. Inubushi, Y. Okano, S. Fujioka, T. Kai, T. Kawamura, A. Morace, R. Redaelli, C. Fourment, J. Santos, G. Malka, A. Boscheron, A. Casner, M. Koenig, T. Nakamura, T. Johzaki, H. Nagatomo, K. Mima
	X-ray polarization spectroscopy to study energy transport in ultra-high intensity laser produced plasmas
P5.127	P. Mulser, D. Bauer, H. Ruhl
	Anharmonic resonance absorption of high power laser beams

P5.128	M.Charboneau-Lefort, M.Shoucri, B.Afeyan
	Numerical Simulation for an Intense Laser Wave Incident on an Overdense Plasma
P5.129	M.Mašek, K.Rohlena
	Numerical simulation of wave-particle interaction in laser plasmas
P5.130	C. Rechatin, J. Faure, A. Lifschitz, X. Davoine, E. Lefebvre, V. Malka
	Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses
P5.131	V.N.Tsytovich
	Nonlinear equilibrium states of self-organized dust structures
P5.132	W.J. Miloch, S.V. Vladimirov, H.L. Pécseli, J. Trulsen
	Wake formation behind elongated insulating dust grains in drifting plasmas numerical simulations
P5.133	Y. Saitou, A. Tsushima
	Two-Dimensional PIC Simulations on Face-to-face Double Probe
P5.134	A.B. Kukushkin, N.L. Marusov, P.V. Minashin, V.S. Neverov
	Self-Assembling of Filaments and Closing the Electric Circuit in a Random Ensemble of a Strongly Magnetized Dust
P5.135	A.Bustos, F.Castejón, L.A. Fernández, V. Martín-Mayor, A.Tarancón, J.L.Velasco
	Kinetic Simulations of ion Heating and Collisional Transport in a 3D Tokamak.
P5.135	L. Couëdel, A. Samarian, M. Mikikian, L. Boufendi
	Dust Particles in Disharge Afterglow
P5.136	T. Antonova, B. M. Annaratone, H.M.Thomas, G.E. Morfill
	Dust particle manipulation in plasma discharge
P5.137	X.G.Adamovich, O.S.Vaulina, Yu.V.Khrustalev, Yu.Yu.Nekhaevsky, O.F.Petrov, V.E.Fortov
	Phase transitions in dusty plasma systems of RF-disharge
P5.138	Y.Peng,R.Hugon,F.Brochard,D.Lacroix,J.Bougdira
	Carbon dusts formation and transport in a radiofrequency discharge
P5.139	M. Schwabe, S.K. Zhdanov, M. Rubin-Zuzic, H.M. Thomas, A.V. Ivlev, G.E. Morfill, V.I. Molotkov, A.M. Lipaev, V.E. Fortov
	Dust Waves in Complex Plasmas under Microgravity Conditions
P5.140	V. V. Yaroshenko, H. M. Thomas, G. E. Morfill
	Dust acoustic waves in a complex plasma layer
P5.141	H. Terças, J. T. Mendonça
	Quantum Tonks-Dattner resonances in cold plasmas
P5.142	P. Pokorny, M. Novotny, J. Bulir, J. Lancok, M. Misina, J. Musil
	Study of processes in a pulsed magnetron Ar/O2 plasma by mass and optical emission spectroscopy
P5.143	R. A. Hardin, E. E. Scime
	A 300 GHz Collective Scattering Diagnostic for Low Temperature Plasmas
P5.144	S.S. Ciobanu, C. Negutu, M. Stafe, V. Pais, V, Stancalie, N.N. Puscas

	Spectroscopic studies and kinetic calculations of laser induced aluminum plasma in air
P5.145	V.V. Peskov, V.A. Kurnaev, N.V. Isaev, E.G. Shustin
	Plasma interaction with non-conducting surface in beam plasma discharge at low magnetic field
P5.146	W. Gao, H.L. Liao, C. Coddet
	Synthesis and characterization of apatite-type lanthanum silicate electrolyte powders
P5.147	W. Oohara, O. Fukumasa
	Surface production of hydrogen negative ions using catalyst
P5.148	A.S.Askarova, E.I. Karpenko, V.E. Messerle, A.B. Ustimenko
	Plasma Enhancement of Coal Dust Combustion
P5.149	D. Sydorenko, I.D. Kaganovich, Y. Raitses, A. Smolyakov
	Electron Kinetic Effects And Beam-Related Instabilities In Hall Thrusters
P5.150	L. Hallo, D. Hébert, A. Bourgeade, C. Mézel, A. Bourgade
	Femtosecond laser obtained cavities in dielectrics Femtosecond laser obtained cavities in dielectrics fluid and elastoplastic behaviour
P5.151	N. Dubuit, J.C. Adam, A. Héron, J.P. Boeuf, J. Perez-Luna, L. Garrigues, G.J.M. Hagelaar
	Kinetic simulations of turbulence and anomalous transport in Hall-effect thrusters
P5.152	J.D.Martin,M.Bacharis,M.Coppins,G.F.Counsell,J.E.Allen
	Dust in Tokamaks a comparison of different ion drag models
P5.153	L.P. Babich, Å.N. Donskoi, R.I.II'kaev, I.M. Kutsyk
	The fundanental characteristics of relativistic runaway electron avalanche in air
P5.154	P. Rebusco, B. Coppi
	Spiral Modes in Astrophysical Plasma Disks and Quasi Periodic Oscillations of Radiation Emission
P5.155	R. Bingham, B.J. Kellett
	Turbulent Plasma Heating as a Mechanism to Explain the Extended X-ray Emission from the Orion Nebula
P5.156	R. Kissmann, J. Kleimann, H. Fichtner, R. Grauer
	High-res simulations of interstellar MHD turbulence Spatial structure and statistics
P5.157	S. Bahamida
	Linear and nonlinear dust-acoustic waves in inhomogeneous non-thermal dusty plasma
P5.158	Y. Nagashima, SI. Itoh, S. Shinohara, M. Fukao, A. Fujisawa, K. Terasaka, T. Nishijima, M. Kawaguchi, Y. Kawai, N. Kasuya, G.R. Tynan, P.H. Diamond, M. Yagi, S. Inagaki, T. Yamada, K. Kamataki, T. Maruta, K. Itoh
	Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas
P2.147	J.G. Rubiano, R. Rodriguez, J.M. Gil, R. Florido, P. Martel, M. Mendoza, D. Suarez, E. Minguez
	Opacity calculations of low Z plasmas for ICF
P5.160	F. Bencheriet, M. Djebli, W. M. Moslem
	Dust-ion-acoustic soliton in magnetized dusty plasma with nonthermal electrons
P5.161	K. Annou
	A Spherical Kadomtsev-Petviashvili Equation for Solitary
P5.162	V.E. Fortov, A.V. Gavrikov, D.N. Goranskaya, A.S. Ivanov, O.F. Petrov, R.A. Timirkhanov
--------	--
	Experimental investigation of the viscoplastic flow in dusty plasma crystal
P5.163	Nasser Sepehri Javan
	Simulation of Raman Backscattering Instability in the Interaction of Two Short and Intense Laser Pulses in Cold Plasma
P5.164	Nasser Sepehri Javan
	Investigation of dispersion and group velocity of electromagnetically induced transparency for two noncollinear lasers in plasma
P5.165	J.M. Donoso, L.Conde
	Propagation modes of the ionization instability in a dusty plasma under electron beam injection
P5.166	V.E.Fortov
	Pressure and Charge Coupling of Strongly Nonideal Plasmas
P5.167	Z. Ehsan, N. L. Tsintsadze, H.A Shah, G. Murtaza
	Decay of Lower Hybrid wave in two lower hybrid waves and cusp soliton in dusty plasmas
P5.168	N. Elkina, K.W. Lee, J. Buechner
	Multi-fluid simulation of interaction between reconnection jet and solar coronal plasma
P5.169	C. Rebont, N. Claire, Th. Pierre, F.Doveil
	Ion velocity in a coherent instability of a linear magnetized plasma
P5.170	S. Perri, G. Zimbardo
	Superdiffusive transport of energetic particles through the heliosphere
P5.171	A.V.Gavrikov, V.E.Fortov, O.F.Petrov, V.N.Babichev, A.V.Filippov, A.F.Pal', A.N.Starostin
	Investigation of photoemissive dusty plasma

LIST OF POST DEADLINE ABSTRACTS

D1.001	S.N. Antipov, E.I. Asinovskii, A.V. Kirillin, S.A. Maiorov, V.V. Markovets, O.F. Petrov, V.E. Fortov
	Dusty Plasma structures at temperatures of 4.2-300 K
D1.002	A. Canton, S. Dal Bello, R. Cavazzana, P. Innocente, P. Sonato
	Density control in RFX-mod Reversed Field Pinch device
D1.003	L. Lauro-Taroni, G. Corrigan, A. Foster, M.O' Mullane, J. Strachan, H.P. Summers, A.Whiteford3, S. Wiesen
	Assessment of the superstate description of heavy impurities for JET and ITER
D2.001	GAO Yaoming, LI Yunsheng
	Simulation for X-ray spectroscopic diagnostics of implosion capsule in IC
D2.002	Ángel De Andrea González
	Initial value problem of the ablative Rayleigh – Taylor Instability: the disappearance of the cut-off wave number
D2.003	J.B. Chen, S.E. Jiang, Zhurong. Cao, W.Yong. Miao, W.M. Zhou, M. Chen and Zh.J. Liu
	Fuel area density diagnostic by secondary protons for ICF

D2.004	Li Jinghong
	Two dimensional Simulation of Radiative Transfer for SG Laser Facility
D2.005	G. J. Lei, G. W. Zhong, J.Y. Cao, J.Rao,B.Li,S. F. Jiang, D. L.Lu, G.Q.Zou, J.F. Yang, H.Liu,X.M. Zhang, X.Y,Wang, J.X.Yang, G.Q.Zhang, L.M.Yu,T. Jiang, L.Li, K.Feng, Z.H.Kang, M.W.Wang, W.M. Xuan,L.Y.Yao, L.Y.Cheng, Z.Cao
	Neutral Beam Injection System and Preliminary Experiment on HL-2A
D2.006	Pakzad Hamid Reza
	Effect of dust charge variation on energy of soliton and linear dispersion in dusty plasma with variable dust charge and two temperature ions
D4.001	Storm Erik
	Indirectly Driven Fast Ignition Fusion Energy: A Path Forward (ORAL PRESENTATION)
D4.002	Pakzad Hamid Reza
	Dust acoustic solitary and shock waves in coupled dusty plasmas with variable dust charge and isononthermal ions
D4.003	B. Weyssow, C. Toniolo and Q. Vanhaelen
	On determining the smoothing length in the Smoothed Particle Hydrodynamics (SPH) description of fluids
D4.004	X.L. Zou, S.D. Song, W.W. Xiaoa, G. Giruzzi, J.L. Ségui, F. Bouquey, C. Darbos, M. Lennholm, R. Magne, E. Traisnel
	Investigation of the Heat Pinch by Low Frequency ECRH Modulation Experiments in Tore Supra
D5.001	P. Amendt, D. Clark, D. Ho, J.Latkowski, J. Lindl, E. Storm, M. Tabak and R.P.J. Town
	Inertial Fusion Energy with Fast Ignition: Progress in Integrated Hohlraum Designs
D5.002	Bell A.
	The inhibition of charged particle transport by a new streaming instability
D5.003	W.W. Xiao, X.L. Zoua, X.T. Ding, L.H. Yao, B.B. Feng, X.M. Song, Y. Zhou, H.J. Sun, Y.D. Gao, L.W. Yan, Q.W. Yang, Yi Liu, J.Q. Dong, X.R. Duan, Yong Liu, C.H. Pan, and HL-2A team
	Observation of a Natural Particle Transport Barrier in HL-2A Tokamak
D5.004	Huang Xiuguang, Fu Sizu, Shu Hua, Ye Junjian, Wu Jiang, He Juhua, Gu Yuan
	Recent experimental researches on laser driving shocks at Shenguang- $I\!I$ facility
D5.005	A.G.Oreshko
	Possibility ball lightning application for nuclear fusion
D5.006	J. Robiche, J. Fuchs, A. Mancic, P. Antici and P. Audebert
	Hydrodynamic of metal target isochorically heated by protons in the warm dense regime

ABSTRACTS OF INVITED TALKS

- 72 -

Alfvén Waves: A Journey between Space and Fusion Plasmas[†]

Liu Chen^{1,2}

Alfvén waves discovered by Hannes Alfvén are fundamental electromagnetic oscillations in magnetized plasmas existing in the nature and laboratories. Alfvén waves play important roles in the heating, stability, and transport of plasmas. The anisotropic nearlyincompressible shear Alfvén wave is particularly interesting; since, in realistic nonuniform plasmas, its wave spectra consist of both the regular discrete and the singular continuous components. In this Alfvén Lecture, I will discuss these spectral properties and examine their significant linear and nonlinear physics implications. These discussions will be based on perspectives from my own research in both space and laboratory fusion plasmas; and will demonstrate the positive feedbacks and crossfertilization between these two important sub-disciplines of plasma physics research. Some open issues of nonlinear Alfvén wave physics in burning fusion as well as magnetospheric space plasmas will also be explored.

[†]Research supported by U.S. DOE, NSF grants, and Guangbiao Foundation of Zhejiang University.

¹ Department of Physics and Astronomy, University of California, Irvine, USA.

² Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

From relativistic laser-plasma interactions

to intense attosecond pulses

G. D. Tsakiris

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

The dawn of lasers capable of delivering Terawatt to Petawatt power output set off the exploration of a host of processes in the realm of relativistic laserplasma interaction. At intensities beyond 10^{18} W/cm² where the electrons mean quiver energy becomes comparable to their rest mass energy, a plethora of new phenomena emerge: X- and γ -rays are copiously generated, the laser light undergoes relativistic self-focusing, electrons and protons are accelerated to breakthrough energies, neutron and positrons are produced, and the laser frequency is up-shifted to harmonic radiation reaching the keV photon energy. The last process of harmonic generation accompanying the interaction of high intensity laser pulses with solid targets gives rise to an intriguing prospect: the production of intense single attosecond pulses. The advent of such pulses will open up the way to real-time observation of a wide range of fast evolving phenomena in atomic, molecular and plasma physics.

Complex plasmas: Forces and dynamical behaviour

Alexander Piel

Christian-Albrechts-University, Kiel, Germany

The field of complex (dusty) plasmas, which experienced a tremendous growth after the discovery of "plasma crystals" [1], in 1994, has now become an integral part of plasma physics. This talk addresses some basic physical mechanisms that illuminate typical features of complex plasmas and discusses recent developments.

The first part of the talk is devoted to the confinement and structure of two-dimensional and 2.5-dimensional plasma crystals in the sheath of radio-frequency discharges. It is shown how the super-sonic ion flow affects the interparticle forces and the structure of the plasma crystal. Recently, three-dimensional plasma crystals could be formed [2], which possess an unusual crystal structure of nested shells. The principle of the shell structure and the differences from "Coulomb crystals" in systems of laser-cooled ions are outlined. The imaging methods have evolved from video-microscopy to stereoscopic imaging and holography.

In a second part, the ion wind force on dust particles is discussed, which leads to the formation of particle-free regions ("voids") of the dust cloud, that are found in many experiments under micro-gravity. Experiments with tracer particles reveal the position where the ion-drag force balances the Coulomb force from the ambipolar electric field. The same technique was used to visualize the sheath around a Langmuir probe. In magnetized plasmas, ion drag leads to torus-shaped dust clouds that are set into poloidal rotation by the ion wind.

The third part addresses 2D dust-lattice waves and 3D dust-density waves. Waves are indispensable tools for the diagnostics of dusty plasmas. On the other hand, complex plasmas can serve as model systems to study phonons in solid and liquid phases of strongly coupled matter.

- J.H. Chu and Lin I, Phys. Rev. Lett. **72**, 4009 (1994); Y. Hayashi and K. Tachibana, Jap. J.
 Appl. Phys. **33**, 4208 (1994); H. Thomas *et al*, Phys. Rev. Lett. **73**, 652 (1994)
- [2] O. Arp et al, Phys. Rev. Lett. 93, 165004 (2004); Phys. Plasmas 12, 122102 (2005)

11.004, Monday 9 June 2008

THREE DIMENSIONAL EFFECTS IN TOKAMAKS

S. Günter, K. Lackner, Ph. Lauber, P. Merkel, E. Strumberger and the ASDEX Upgrade team

Max-Planck Institut für Plasmaphysik, 85748 Garching, Germany, EURATOM Association

We give an overview of 3-d effects in tokamaks, stressing synergies with stellarator research, in particular in the development and use of computational tools. We restrict to situations, where perturbations grow slowly ($\gamma << R/V_{alf}$), so that the plasma passes through a sequence of 3-d ideal-MHD equilibrium states, with the time-dependence determined by the resistive decay of plasma or wall currents (excluding thereby Alfvén-type modes). The actuality of the topics is given by the recent ITER and DEMO discussions, emphasising the active control of neoclassical tearing (NTM) and resistive wall modes (RWM) as well as edge profiles (through resonant perturbations). The slow rate of change of all these states raises the possibility of external feedback.

Localized current deficits at resonant surfaces in standard-q profile discharges can be induced by conductivity (pellet injection or radiation enhancement) or bootstrap current reduction (NTMs), and can result in ideal-MHD stable helical equilibrium states (sometimes termed snakes) with closed flux surfaces and evidently good energy and particle confinement. These perturbations lead to losses of fast particles, generally not associated with resonances in velocity space, but similar to those in non-optimized stellarators. They can now be well diagnosed with fast particle analyzers having high-resolution in time and velocity space.

Even ideal-MHD unstable low-n modes can be reduced to slowly developing equilibrium states by the presence of sufficiently close resistive walls. Realistic wall structures thereby lead to a coupling of different toroidal modes, effectively suggesting the use of stellarator codes for their analysis. Plasma rotation has a strong effect on the predicted growth rate, but the magnitude of the rotation and the critical field amplitude for mode locking depend strongly on rotation damping by 3-d magnetic field perturbations. Even for a given rotation speed the dispersion relation of the mode depends on kinetic effects, and we describe also recent efforts to apply truly kinetic stability codes (developed originally for fast particle driven instabilities) to the analysis of resistive wall modes.

Material erosion and migration studies in JET and its implications for ITER

S. Brezinsek and JET EFDA contributors*

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK Institut für Energieforschung-4, Forschungszentrum Jülich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich, Germany

Material erosion, long and short range migration, re-deposition, and tritium retention are among the most outstanding problems for future fusion devices aiming to operate in a steady state mode. This is one of the main research topics presently in JET which operates with full carbon walls and Be evaporation, with the particular aim to prepare for future comparison after the installation of the new ITER like wall at JET. A number of important and new insights have been obtained with the help of improved diagnostics and dedicated pulse sequences. Spatial distribution and layer characteristics have been identified with dedicated slow plasma sweeps and spatially resolved hydrocarbon spectroscopy and Quartz microbalance deposition detectors which have been placed around the JET divertor. The main results can be summarised as following:

(i) carbon is mainly released from first wall and deposited in the inner divertor. The magnetic configuration is the main factor which determines the deposition pattern at first, e.g. the private flux region turns from net deposition to erosion when the configuration changes from vertical to horizontal target operation.

(i) the deposited carbon undergoes further transport inside the divertor by a stepwise process induced by new magnetic configurations which lead to enhanced re- erosion of freshly deposited layers. This erosion is much stronger than for bulk graphite substrate.

(iii) this effect is partly attributed to the disintegration of deposited layers by plasma impact far below normal carbon sublimation sets in. Spectroscopy shows that this is accompanied by an enhanced release of carbon clusters.

(iv) a strongly nonlinear increase of the local carbon release and migration inside the divertor with ELM size has been found such that a few large type I ELMs lead to a stronger migration than many small ELMs.

These observations can explain the large carbon deposition and tritium retention on remote areas (louvers) in the JET DTE1 experiment. They show also that the dynamics of carbon transport is a specific carbon property since it is coupled with the deposition and fast disintegration of carbon layers. Such effects are not expected for metallic layers such as Be. This view is also supported by the fact that the Be content in layers on plasma facing areas in the inner divertor reach values typically of 20% while the Be is strongly de-enriched in C-layers in remote areas by factors between 10-100.

^{*} See the Appendix of M.L. Watkins et al., Fusion Energy 2006 (Proc. 21st Int. Conf. Chengdu, 2006) IAEA (2006)

Stellarators and the path from ITER to DEMO Allen H. Boozer Columbia University, New York, NY 10027, USA

A low risk extrapolation from ITER to a demonstration of fusion power, DEMO requires information from a broader fusion program on materials and physics issues. Five of the physics issues have been addressed by non-axisymmetric shaping: (1) robustness of the plasma equilibrium, (2) insensitivity to details of profiles, (3) limits on the plasma density, (4) mitigation of magnetic field errors, and (5) the control of large pulses of energy to divertors through ELM's. Operational limits in tokamaks are often set by disruptions, which cannot be tolerated in DEMO and are an extreme example of nonrobustness. Profile sensitivity comes in part through the bootstrap current, which is far more important in DEMO than in ITER. The profile sensitivity in tokamak experiments is also implicated in the sustainable pressure being significantly lower that the maximum achievable pressure. The Greenwald density limit of tokamaks would force DEMO to operate where the pressure of alphas makes energetic particle instabilities problematic and the divertors difficult. The only known experimental solution to these three issues is the non-axisymmetric shaping of stellarators. In addition, magnetic field errors due to displacements of coil currents cannot be eliminated, but the deleterious effects can be greatly reduced by controlled non-axisymmetric shaping. Using related techniques, an asymmetric perturbation can be chosen to modify the H-mode pedestal for ELM control while having minimal effects on the central plasma. Non-axisymmetric shaping can be expected on DEMO. The question is the type and the level: (1) a low level for error field and ELM control; (2) a moderate level for robustness against disruptions, reduced profile sensitivity, and elimination of current drive, or (3) a high level to make DEMO as insensitive to plasma profiles as possible. The NCSX stellarator will study quasiaxisymmetric shaping, which means non-axisymmetric shaping consistent with the P_{ω} invariance of axisymmetry. This shaping can be applied to a tokamak at any level from low to moderately strong. The non-axisymmetric shaping used on the W7-X stellarator allows even more complete plasma control through minimization of j_{μ}/B . The broader fusion program will determine the degree to which non-axisymmetric shaping can be used to minimize the risks of DEMO-both the physics benefits and the feasibility of the engineering. Supported by the U.S. Department of Energy grant ER54333.

JT-60U advanced tokamak research towards JT-60SA

S. Ide¹, the JT-60 team¹

¹Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki, 311-0193 JAPAN

Towards realization of a steady-state tokamak reactor, establishing operational scenario with a plasma of high normalized beta (β_N) and high bootstrap current fraction (f_{BS}) is a key issue. Such a plasma is known as an advanced tokamak (AT) plasma. Development of AT plasmas has been intensively pursued in JT-60U [1]. In the AT development, increasing the key parameters ($\beta_{\rm N}$, $f_{\rm BS}$, etc.) and extending the sustaining duration are both important equally. In recent JT-60U experiments, $\beta_N \sim 4.2$ and $f_{BS} \sim 100\%$ have been achieved separately in short time scale (~energy confinement time) and sustainment of $\beta_N = 2.3$ for 23 s and $f_{BS} = 70\%$ for 8 s in long time scale (several to several tens of current diffusion time) have been demonstrated. These achievements have been supported and stimulated progress in understanding of physics issues: effect of plasma rotation on resistive wall mode and energy confinement, effect of localized current drive on neo-classical tearing mode, off-axis current drive by NBI and so forth. Based on the physics understanding, integrated active control on local/global current profile, rotation profile, plasma pressure, either separately or combined, has been developed. These research and development are, as mentioned before, towards DEMO and ultimately a reactor. Moreover, in nearer term, they will contribute to ITER, especially development of the advanced scenarios in ITER. Now a project on modification of JT-60U into a super-conducting machine (JT-60SA [2,3]) is in progress. These JT-60U results will contribute not only to development towards ITER and DEMO, but also to establishing physics operation in JT-60SA. In this presentation, recent progress in AT development in JT-60U will be discussed with emphasis on their impact for JT-60SA.

- [1] H. Takenaga and the JT-60 team, Nuclear Fusion 47, S563 (2007)
- [2] M. Kikuchi et.al., proc. of 21st IAEA Fusion Energy Conference (2006)
 IAEA-CN-149/FT/2-5
- [3] T. Fujita et.al., Nuclear Fusion 47, 1512 (2007)

FIRST RESULTS ON IONS ACCELERATION IN AN ULTRA-SHORT, ULTRA HIGH CONTRAST 50 TW LASER REGIME

T. Ceccotti, A. Lévy, F. Réau, P. D'Oliveira, P. Monot and Ph. Martin Service des Photons, Atomes et Molécules, Commissariat à l'Energie Atomique, DSM/IRAMIS, CEN Saclay,91191 Gif sur Yvette, France

Recent progresses on laser beam contrast ratio improvement devices [1] have allowed obtaining contrast values as high as 10^{10} . First experiments using ultra high contrast (UHC) pulses for proton acceleration [2] have demonstrated the expected important increase in maximum proton energies reducing the target thickness and, as a consequence, the benefits of UHC pulses in enhancing proton energy scaling laws. Even more, it has been possible to highlight the symmetrical behaviour of ions bunches production from both sides of the target and the role of beam polarization [3]. The recent upgrade of the laser chain at Saclay from 10 TW to 100 TW gives us access to an interaction domain for ion acceleration never explored so far, characterized by ultra short pulse duration (< 25 fs), very high intensity (>10¹⁹ W/cm²) and UHC (close to 10^{12}). Measurements of ions bunches properties in this laser intensity range will allow building scaling laws and predicting parameters for future applications. Finally, due to the outstanding high contrast shot-to-shot repeatability, all collected data are of main importance for numerical codes validation.

The first results on ions and protons acceleration obtained using the 100 TW Saclay laser will be presented and the perspectives they open will be discussed.

- [1] A.Lévy et al., Opt. Lett. 32, 310 (2007); A. Julien etal., Opt. Lett., 30, 920 (2004).
- [2] D.Neely et al., Appl. Phys. Lett. 89, 021502 (2006); P.Antici et al., Phys. Plasmas 14, 030701 (2007)
- [3] T.Ceccotti et al., PRL 99, 185002 (2007)

11.009, Monday 9 June 2008

RADIATION SOURCES BASED ON LASER-PLASMA ACCELERATORS: CURRENT STATUS AND CHALLENGES

D.A. Jaroszynski¹

¹University of Strathclyde, Glasgow, United Kingdom

Radiation sources are ubiquitous tools for studying the structure and dynamics of matter. Current light sources can produce both brilliant and picosecond duration x-ray pulses which are useful for time resolved studies. There is a drive to reduce their pulse durations to a few femtoseconds or less, and increase their brilliance to enable single-shot measurements for unravelling structural or chemical changes on unprecedented time scales. Synchrotron source provide high average power and tuneable x-ray radiation, whereas the next generation x-ray free-electron lasers (FELs), which are currently being developed, will provide intense coherent radiation with several tens of femtosecond pulse durations. However, these sources are some of the largest instruments that exist. Their huge size and cost is a result of the microwave accelerator technology on which they are based. The acceleration gradients are restricted to gradients of 10-100 MV/m. The recent development of table-top multi-terawatt femtosecond lasers has provided the opportunity to significantly miniaturise accelerator technology by harnessing plasma waves as a medium for generating electrostatic fields with gradients approaching 1 TV/m. Recent pioneering developments in laser-driven plasma wakefield accelerators has resulted in controllable high quality electron bunches [1,2] that are providing a realistic prospect of realising a table-top synchrotron source and possibly an Xray FEL. This could transform the way science is done by making available compact femtosecond infrared, UV and X-ray sources to University sized establishments. We will present the significant challenges facing the realisation of a compact plasma based source and review the first major advance where synchrotron radiation from an undulator driven by wakefield accelerator was demonstrated [3]. Recent progress towards an FEL based on a plasma wakefield accelerator and results from the ALPHA-X project [4] will be presented.

- [1] S. P. D. Mangles, et al., Nature, **431**, 535 (2004)
- [2] W. P. Leemans et al., Nature Physics 2, 696 (2006)
- [3] H.-P. Schlenvoigt, et al., Nature Physics, doi:10.1038/nphys811 (2007)
- [4] D. A. Jaroszynski, et al., Phil. Trans. R. Soc. A 364, 689 (2006).

Novel radiation sources using plasma mirrors

 <u>Fabien Quéré¹</u>, Cédric Thaury¹, Hervé George¹, Jean-Paul Geindre², Pascal Monot¹, Philippe Martin¹
 ¹Service des Photons, Atomes et Molécules, Commissariat à l'Energie Atomique, DSM/IRAMIS, CEN Saclay, 91191 Gif-sur-Yvette, France
 ²Laboratoire pour l'Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, 91128 Palaiseau, France

e-mail: fabien.quere@cea.fr

When an intense ultrashort laser pulse hits an optically-polished solid target, it generates a dense plasma that acts as a mirror, known as a plasma mirror (PM). PMs can be used as ultrafast optical switches to improve the temporal contrast of ultrashort laser pulses [1]. At high enough intensities, high-order harmonics of the incident frequency, associated in the time-domain to attosecond pulses, can also be generated upon reflection on this mirror. Because there is in principle no limit on the laser intensity that can be applied to such a medium, this is a promising path to generate coherent beams of attosecond pulses with higher photon and pulse energies than those obtained by High-order Harmonic Generation (HHG) in gases. HHG from plasma mirrors is also likely to become a unique tool to investigate many key features of high-intensity laser-plasma interactions.

Using Particle-in-Cell simulations, we identify two very distinct harmonic generation mechanisms on PMs: Coherent Wake Emission (CWE) [2] and the Relativistic Oscillating Mirror [1]. Exploiting ultrashort pulses with a high temporal contrast, we demonstrate that harmonics generated by these two mechanisms can be clearly discriminated experimentally [1], through different features, such as their spectral width, spectral range, and intensity dependence. Due to the coherent character of the generation, the properties of the harmonics - *e.g.* their divergence- can be controlled through the phase of the driving laser field [3]. Finally, we demonstrate the mutual coherence of several harmonic beams generated by three spatially-separated focal spots of different intensities, and use the resulting interference pattern to measure the dependence of the CWE harmonic phase on laser intensity [4].

- [1] C. Thaury et al, Nature Physics **3**, 424 429 (2007)
- [2] F. Quéré et al, Phys. Rev. Lett. 96, 125004 (2006)
- [3] F. Quéré et al, accepted for publication in Phys. Rev. Lett. (2008)
- [4] C. Thaury et al, submitted (2008)

11.011, Monday 9 June 2008

Full characterisation of a laser-produced keV X-ray Betatron source and applications

F. Albert, K. Ta Phuoc, R. Shah, S. Corde, R. Fitour and A. Rousse Laboratoire d'Optique Appliquée, ENSTA, CNRS UMR 7639, Ecole Polytechnique, Chemin de la Hunière, 91767, Palaiseau, France

A. Pukhov

Institute fur Theoretishe Physik I, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany

The advance of ultrafast laser technology, with chirped pulse amplification (CPA) laser systems, has allowed the production of X-ray sources in the femtosecond regime.

In previous work [1] a novel laser based hard (a few keV) X-ray source, the Betatron source, that combines the key features of synchrotron radiation, collimation and polychromaticity, with, in addition, a femtosecond pulse duration, has been observed. Relativistic (>100 MeV) electrons are accelerated and oscillate in the electrostatic fields generated in the wake of an ultraintense (30 fs, 50 TW) laser pulse to produce a synchrotron-like X-ray beam.

Following this result, which has provided a novel approach for laser based X-ray generation, the main parameters of the Betatron source have been investigated using three independent methods relying on spectral and spatial properties of the source.

First we will show new studies on the spectral correlation between electrons and X-rays that is analysed by use of a numerical code to calculate expected photon spectra from the experimentally measured electron spectra. High resolution X-ray spectrometers have been used to characterize the X-ray spectra within 0.8-3 keV and to show that the Betatron oscillations lie within 1 μ m [2].

Then, we observed Fresnel edge diffraction of the X-ray beam. The observed diffraction at center energy 4 keV agrees with Gaussian incoherent source profile of full width half maximum (FWHM) <5 μ m, meaning that the amplitude of the Betatron oscillations is less than 2.5 μ m [3].

Finally, by measuring the far field spatial profile of the radiation, we have been able to characterize the electron's trajectories inside the plasma accelerator structure with a resolution better than 0.5 μ m [4].

We will as well demonstrate the potential of the Betatron X-ray source for applications. It has been used as a probe to perform a time-resolved X-ray diffraction experiment [5]. The ultrafast nature of the source has been shown by measuring an ultrafast phase transition (non thermal melting in InSb).

References

1- A. Rousse, K. Ta Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.P. Rousseau, D. Umstadter, and D. Hulin, *Phys. Rev. Lett.*, **93**, 13 135005 (2004); K. Ta Phuoc, F. Burgy, J.P. Rousseau, V. Malka, A. Rousse, R. Shah, D. Umstadter, A. Pukhov, S. Kiselev, *Phys Plasmas*, **12**, 023101 (2005).

2- F.Albert, R.Shah, K. Ta Phuoc, R. Fitour, F. Burgy, J.P. Rousseau, A. Tafzi, D. Douillet, T. Lefrou and A. Rousse, submitted to *Phys. Rev. E* (2007).

3- R.Shah, F. Albert, K. Ta Phuoc, O Shevchenko, D. Boschetto, A. Pukhov, S. Kiselev, F. Burgy, J.P. Rousseau and A. Rousse, *Phys. Rev. E* **74** 045401(R) (2006).

4- K. Ta Phuoc, S. Corde, R. Shah, F. Albert, R. Fitour, J.P. Rousseau, F. burgy, B. Mercier and A. Rousse, *Phys. Rev. Lett*, **97**, 225002 (2006).

5- K. Ta Phuoc, R. Fitour, A. Tafzi, T. Garl, N. Artemiev, R. Shah, F. Albert, D. Boschetto, A. Rousse, D-E. Kim, A. Pukhov, V. Seredov, I. Kostyukov, *Phys. Plasmas*, **14** 080701 (2007)

Plasmadeposition of ultrathin films for biomedical use

C. Oehr, J. Barz, B. Elkin, Michael Haupt, M. Mueller, U. Vohrer

Fraunhofer Institute for Interfacial Engineering and Biotechnology

Nobelstrasse 12, in 70569 Stuttgart

Email: <u>oehr@igb.fraunhofer.de</u>

Abstract

Plasma Polymerization is used since more than 40 years to develop thin films for different kinds of applications. At least since the sixties of the last century these films are used in the fields of medicine and pharmacy.

Due to the fact that polymers are applied to design low-weight devices and to realize different geometries very easily, the films are mainly deposited onto polymeric substrates. It is a characteristic property of plasma polymerized films that they show strong adhesion to polymer substrates due to creation of radical sites at the interface when deposition starts. Thus thin layers with good adhesion, a defined amount of chemical functionalities and stability to sterilization processes are generated. This fits to the needs for medical application.

In principle plasma processing offers different approaches for the deposition of thin films with a variable amount of functionalities available for reaction with bio-molecules. Advantages and disadvantages of the different deposition strategies will be discussed.

The interaction of biological systems with materials can be divided in three subsystems. First, the interaction with biomolecules. Here the binding of molecules with specific activities on one hand and the minimizing of unspecific protein adsorption on the other hand can be influenced by thin plasma polymers deposited on medical devices. Second, the interaction between bacteria and surfaces can be modulated via deposition of thin films with bacteriostatic or bacteriocidic properties on devices. Third, the interaction of surfaces with mammalian cells can also be influenced to enhance the cell growth and cell proliferation for the development of test kits or implants. In this contribution examples for these three categories will be shortly reviewed.

Beside the preparation of the mentioned films also the analytical tools necessary for film development and control of its properties are stressed in the final chapter of this contribution. A correlation between physico-chemical properties of the applied plasma polymerized films and the biological requirements will be tried.

References

1. C. Oehr, Plasma Processes and Polymers Wiley-VCH 2005 p 23-37, p 39-49, p309-317

- 2. V. Sciarratta et al, Plasma Process. Polym. 2006,3, 532-539
- 3. J. Barz et al, Plasma Process. Polym. 2006,3, 540-552
- 4. M. Haupt, J. Barz, C. Oehr Plasma Process. Polym. 2008,5, 33-43

MODELING PLASMA MODIFICATION OF SURFACES AT LOW AND HIGH PRESSURE: ACHIEVING HIGH CONTROL OF REACTANTS*

M. J. Kushner

Iowa State University, Ames, Iowa, 50011 USA mjk@iastate.edu

The plasma modification of surface layers has made significant progress, particularly at low pressure where the control of uniformity over large areas and real-time-control strategies are more easily achieved. Ultimately, the quality of the materials produced depends on the ability to deliver the desired reactants and activation energy to those surfaces with a high degree of control. As feature sizes diminish and requirements for selectivity increase, the ability to control the energy and identity of reactants to the surface becomes more important. As plasma modification of surfaces at atmospheric pressure are applied to higher value materials, similar strategies must be developed to achieve uniformity over larger areas. Real-time-control strategies may also be required. In this talk, we will discuss the use of plasma models to develop strategies, both intrinsic to the plasma and externally through realtime-control, to specify reactant fluxes to the substrate to achieve mono-layer resolution of surface modification. The modelling platforms used in these investigations will first be described followed by examples, from low and high pressure plasma modification of surfaces, of how control of reactants to the surface can be achieved.

One such example is the etching of extremely high aspect ratio contacts (HARC) in low pressure plasmas. HARCs having aspect ratios of tens to as much as a hundred, with contact openings of only 50-60 nm, are particularly challenging to uniformly etch with high selectivity. The opening to the feature is so small that the incident charged and neutral fluxes are stochastic in nature. This leads to occasional non-uniform charging inside the feature, producing lateral electric fields and eventually "twisting" (that is, turning of straight features). Advanced equipment concepts that tailor high energy electron fluxes with a narrow angular spread enables those fluxes to penetrate into the feature and neutralize the errant positive charge. HARCs also are challenged by micro-trenching which requires extremely high selectivity to address. Achieving this high selectivity may ultimately require atomic-layer, self-limiting processes. Results will be discussed from plasma modelling of these processes which has provided strategies for optimizing the shape of features.

^{*} Work supported by Semiconductor Research Corporation, Micron Technologies, Applied Materials and TEL, Inc.

Particle growth and detection in low temperature plasmas

L. Boufendi, C. Dupuis, G. Wattieaux, Y. Tessier and M. Mikikian,

Groupe de Recherches sur l'Energétique des Milieux Ionisés, Université d'Orléans, 45067 Orléans Cedex2, France

Dust particle nucleation and growth has been widely studied these last fifteen years in different chemistries and experimental conditions. This phenomenon is correlated with various electrical changes at electrodes, including self-bias voltage and amplitudes of the various harmonics of current and voltage[1]. Some of these changes, such as the appearance of more resistive plasma impedance, are correctly attributed to loss of electrons in the bulk plasma to form negative molecular ions (e.g. SiH_3^-) and more precisely charged nanoparticles. These changes were studied and correlated to the different phases on the dust particle formation. It is well known now that, in silane argon gas mixture discharges, in the first step of this particle formation we have formation of nanometer sized crystallites. These small entities accumulate and when their number density reaches a critical value, about 10¹¹ to

 10^{12} cm⁻¹, they start to aggregate to form bigger particles. The different phases are well defined and determined thanks to the time evolution of the different electrical parameter changes.

The purpose of this contribution is to compare different chemistries to highlight similarities and/or differences in order to establish possible universal dust particle growth mechanisms. The chemistries we studied concern SiH₄-Ar, CH₄, CH₄-N₂ and Sn(CH₃)₄ [2]. We also refer to works performed in other laboratories in different discharge configurations[3].

[1] L. Boufendi, J. Gaudin, S. Huet, G. Viera and M. Dudemaine, Appl. Phys. Lett. **79**, 4301 (2001).

[2] M. Jubault, J. Pulpytel, H. Cachet, L. Boufendi, F. Arefi-Khonsari, Plasma Process. Polym, 4, S330–S335 (2007)

[3] D. Samsonov and J. Goree, J. Vac. Sci. Technol. A17, 2835 (1999).

Diagnostics of dense dispersive plasmas by line reversal

D. Karaboumiotis

Department of Physics, Institute of Plasma Physics, University of Crete, Heraklion, Greece

Plasma spectroscopy by optically thick lines is yet an open problem due to a lack in the knowledge of fundamental mechanisms of the line formation. For instance, the intensity in the central part of self-reversed lines emitted from the high-pressure plasmas of high-intensity discharge (HID) lamps is much higher than that calculated by solving the conventional radiative transfer equation [1]. On the other hand, absorption measurements have proved that the optical depth at the central part of the line is one to two orders of magnitude less than that calculated according to the conventional theory of radiation transport [1, 2]. These striking differences between experimental and theoretical results in dense, strongly absorbing plasmas might be explained by the possibility of non-radiative transfer of excitation in the neighborhood of the transition frequency by resonant collisions leading to a rapid increase of the intensity in the vicinity of the line center followed by a rapid increase of the corresponding optical depth [3]. This phenomenon depends on the dispersion of the radiation in the dense plasma-medium and it arises when the mean free path of the photons with respect to absorption is comparable to the wavelength of the radiation. A diagnostic method was proposed [1, 4] for temperature determination from line reversal based on an approximation for the source function [5]. This method relates the radiance at the reversal maxima of the spectral line to the maximum temperature along the line of sight through the so-called inhomogeneity parameter which strongly depends on the central line minimum. In this work we show that the presence of dispersion effects does not affect the determination of the inhomogeneity parameter and therefore the applicability of the diagnostic method. The temperatures in a high-intensity discharge (HID) lamp are therefore determined from self-reversed lines and the changes in the minimum intensity and the optical depth caused by the dispersion-related effects are determined by comparing the experimental results with those obtained by numerical simulation of the studied dense discharges.

- [1] D. Karabourniotis, J. Phys.D : Appl. Phys. 40 (2007) 6608
- [2] E. Drakakis, A. Palladas, D. Karabourniotis, J. Phys. D : Appl. Phys. 25 (1992) 1733
- [3] A.Yu. Sechin et al, J. Quant. Spectrosc. Radiat. Transfer 58 (1997) 887
- [4] D. Karabourniotis, J. Phys.D : Appl. Phys. 16 (1983) 1267
- [5] D. Karabourniotis, E. Drakakis, J.J.A.M. van der Mullen, J. Quant. Spectrosc. Radiat. Transfer 108 (2007) 319

Temperature Equilibration in Dense, Strongly Coupled Plasmas

Dirk O. Gericke

Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

The equilibration of multi-temperature plasmas is a fundamental problem in plasma physics since such systems are often created after laser or particle beam interactions with matter. In dilute, weakly coupled plasmas, where binary collisions dominate the energy transfer, this process is well understood whereas in dense and strongly coupled plasmas, more complicated processes have to be considered: first of all the surrounding medium modifies the electron-ion collisions [1]; moreover, the collisions seemed to be suppressed by collective modes in the system [2]. Energy transfer through such modes is therefore an important relaxation process and the fact if low energy ion modes occur or not strongly influences the relation times [3]. Furthermore, the potential energy due to correlations must be included in the description of the equilibration process [5, 4].

This contribution will focus on the influence of coupled collective modes: firstly, their influence on the electron-ion energy transfer is discussed for weakly coupled plasmas where the modes can be described by the well-known Lenard-Balescu equation. Explicite expressions when coupled mode effects are expected can be derived. Strong coupling effects included by static local field corrections shift these modes and, accordingly, reduce the energy transfer rates. The description of the full relaxation process must include potential energy contributions on the same level [5]. These correlation energies have the overall effect of an energy sink that slows down the ion heating during temperature equilibration in laser heated plasmas.

- [1] D.O. Gericke, M.S. Murillo, and M. Schlanges, Phys. Rev. E 65, 036418 (2002).
- [2] D.O. Gericke, J. Phys. (Conference Section) 11, 111 (2005).
- [3] J. Vorberger and D.O. Gericke, in preparation for Phys. Rev. E.
- [4] D.O. Gericke, G.K. Grubert, Th. Bornath, and M. Schlanges, J. Phys. A 39, 4727 (2006).
- [5] D.O. Gericke, Th. Bornath, and M. Schlanges, J. Phys. A 39, 4739 (2006).

MHD Instabilities in Magneto-Plasma-Dynamic Thrusters

<u>F. Paganucci</u>[§], M. Agostini[‡], M. Andrenucci[§], V. Antoni[‡], F. Bonomo, R. Cavazzana[‡], P.

Franz[‡], L. Marrelli[‡], P. Martin[‡], E. Martines[‡], P. Rossetti[♠], P. Scarin[‡], G. Serianni[‡], M. Signori^{♣‡}, G. Spizzo[‡] and M. Zuin[‡]

[§]Department of Aerospace Engineering, University of Pisa, Italy.
 ^{*}Centrospazio- ALTA S.p.A., Via A. Gherardesca 5, 56014 Pisa, Italy
 [‡]Consorzio RFX, Euratom-ENEA Association, corso Stati Uniti 4, 35127 Padova, Italy

Magneto-plasma-dynamic (MPD) thrusters represent a high power electric propulsion option for primary space missions. They act as electromagnetic plasma accelerators, with a possible range of operations spanning from orbit-raising to interplanetary missions of large spacecrafts. One of the major problems facing MPD thruster operation is the onset of a critical regime, which is found when the power is increased beyond a threshold value, mainly depending on thruster geometry, type and mass flow rate of propellant, applied magnetic field intensity. In this regime, large fluctuations in the electrode voltage signals and damage to the anode are observed along with efficiency degradation. Since 2000, Centrospazio-Alta and Consorzio RFX have been carried out several experimental campaigns aimed at investigating the electrostatic and magnetic properties of plasma fluctuations, by means of electromagnetic and optic probes and ultraviolet tomography. The experimental results have evidenced a strong relation between the onset phenomena and the growth of a large-scale magnetohydrodynamic (MHD) instability, with the features of a helical kink mode. Its growth is well described by the Kruskal-Shafranov stability criterion, which gives results in very good agreement with a semi-empirical stability criterion for MPD thrusters, proposed by other authors. On the basis of the experimental observations, some active as well as passive instability suppression methods have been proposed and partially tested, with encouraging results. The paper gives a synthesis of the main results of the activity carried out so far and indications for the next investigations.

The Physics of Fast Ion Driven Instabilities in Fusion Plasmas

S.D. Pinches and JET EFDA Contributors*

EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxon, OX14 3DB, UK

As the fusion community moves towards the realisation of devices containing burning plasmas, i.e. devices in which the intrinsic heating from energetic particles (by-products of fusion reactions) is dominant, it is timely to examine the recent progress made to understand the range of energetic particle driven modes observed and their consequences in terms of fast ion redistribution and loss.

JET's large size and high current capabilities furnish it with excellent fast ion confinement properties which together with its extensive range of dedicated fast ion diagnostics (scintillator probe, Faraday cup array, gamma-ray spectrometer, gamma-ray tomography, neutral particle analyser) and extensive range of sensitive fluctuation measurements (magnetics, far infra-red interferometry, O and X-mode microwave reflectometry, soft X-rays, electron cyclotron emissions) make it an ideal testing ground for investigating the instabilities driven by fast ions with energies in the MeV range.

Dedicated experiments examining fast ion losses and redistribution have been conducted, drawing together the extensive range of diagnostic information to reveal the modes responsible, together with quantitative measurements of their consequences in terms of fast ion redistribution and loss. Experiments in which minority ions are accelerated to MeV energies have been used to study the redistribution of fast ions due to various instabilities including large core modes (n = 1 fishbones and sawtooth) which have been observed to redistribute fast ions across the q = 1 surface. In other experiments, fishbones have been observed to trigger neoclassical tearing modes, indicating that sawtooth control alone may be insufficient to avoid these confinement degrading modes.

Core-localised modes are often difficult to detect using magnetic pick-up coils and so the use of X-mode reflectometry techniques to detect and localise these modes has been pioneered. Experiments examining fast ion losses due to tornado modes (core-localised toroidal Alfvén eigenmodes) have been conducted using far infra-red interferometry measurements to detect these Alfvénic perturbations. In general, the radial gradient of the fast ions provides the drive for modes, however recently Alfvénic modes that propagate both co and counter to the plasma current have been observed following sawteeth, indicating the possibility that such modes can be driven by fast ion anisotropy. The application of these core fluctuation diagnostics have made MHD spectroscopy an even more powerful tool in assisting scenario development.

Even modes which are expected to be unstable in burning plasmas but which are stable in JET are not beyond scrutiny. The new active excitation system installed on JET is capable of driving the modes predicted to be most unstable in ITER and measuring their properties. This provides a measurement of the proximity to instability and valuable data against which theoretical understanding can be validated.

As a result of these advances, both our linear and nonlinear understanding of the phenomena expected to arise in burning plasmas have been enhanced and we can move towards the realisation of fusion devices with an increased level of confidence.

This work was funded jointly by the UK EPSRC and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

^{*} See Appendix of M.L. Watkins *et al.*, Fusion Energy 2006 (Proc. 21st Int. Conf. Chengdu, 2006) IAEA, (2006)

Watching Ions Dance Near Absolute Zero

Thomas C. Killian Department of Physics & Astronomy, Rice University; Houston, TX 77005

Ultracold neutral plasmas, formed by photoionizing laser-cooled atoms near the ionization threshold, stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas is from 1-1000K and the ion temperature is around 1 K. The density can be as high as 10¹⁰ cm⁻³. They provide a playground for studying strongly coupled plasmas, in which the Coulomb interaction energy exceeds the thermal energy. Strong coupling is of interest in many areas of physics, and in ultracold plasmas it leads to spatial correlations and surprising equilibration dynamics. The expansion of ultracold plasmas into the surrounding vacuum can also probe the physics of plasmas produced with short-pulse laser irradiation of solid, liquid, foil, and cluster targets.

This work is supported by the U.S. National Science Foundation and David and Lucille Packard Foundation.

Figure 1. Ultracold neutral plasmas occupy a previously unexplored region of phase space and can be strongly coupled. The graphic shown for ultracold neutral plasmas is an absorption image of ions in the plasma. Adapted with permission from the Contemporary Physics Education Project. Copyright 1996.

Experiments and simulation of edge turbulence and filaments in MAST

B.Dudson¹, N.Ben Ayed^{1,2}, S.Tallents², A.Kirk², H.Wilson¹, B.Hnat³, R.Dendy², S.Saarelma², G.Counsell², B.Lloyd²

¹ Department of Physics, University of York, YO10 5DD. Contact <u>bd512@york.ac.uk</u>

² EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB

³ Department of Physics, Warwick University, Coventry CV4 7AL

Experimental and simulation results on filament structures observed in MAST from Lmode and H-mode plasmas will be presented. Understanding these structures is important both due to their influence on transport in the pedestal, and also due to their effect on cross-field transport in the SOL and hence power loading on plasma-facing components.

Fast camera and reciprocating Langmuir probe data have been used to determine the mode-number, toroidal and radial velocities of the filaments observed. A comparison of the data from L-mode, inter-ELM and during ELMs shows that while ELM filaments

 move coherently, those
 observed in L-mode and inter-ELM regimes move toroidally and radially independent of each other. In both L-mode and inter-ELM regimes, the number of filaments is found to increase with plasma density. L-mode simulations using the 3D, 2-fluid BOUT code produce similar
 widths and radial velocities to
 the observations. Detailed

Fast imaging (left) and BOUT simulations (right) of MAST Lmode plasmas

the observations. Detailed examination of simulation

results indicate the presence of a mixing layer within 2cm of the separatrix, across which the character of the turbulence changes.

Statistical analysis of L-mode edge fluctuations associated with edge filamentary structures is presented, examining correlation functions, scaling of moments and PDFs. These results confirm a dual temporal scaling with a time t ~ 40-60 μ s separating the two regimes. Combining these results with the image analysis indicates that the dual temporal scaling is due to the properties of the individual filaments.

Progress in understanding ELM events using linear and non-linear codes is reviewed, including results concerning the effect of x-point geometry, edge rotation and poloidal beta on ELM stability. First results from a new modular code (developed from BOUT in collaboration with LLNL) for non-linear ELM simulations will be presented. This code is capable of simulating a wide variety of plasma fluid models and magnetic geometries. One objective is to study and compare plasma eruptions in a range of different situations, such as ELMs and solar flares.

This work was supported in part by the Engineering and Physical Sciences Research Council and by Euratom. The content of the publication is the sole responsibility of the authors and it does not necessarily represent the views of the Commission of the European Union or their services.

JET confinement studies and their scaling to high βN , ITER scenarios

<u>D C McDonald</u>¹, C D Challis¹, J C DeBoo², P de Vries¹, J Hobirk⁵, E Joffrin³, L Laborde¹, T C Luce², J Mailloux¹, V Pericoli-Ridolfini⁴, F Ryter⁵ and JET EFDA contributors^{*}

JET-EFDA, Culham Science Centre, Abingdon OX14 3DB, UK

¹ EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB, UK,

²General Atomics, P O Box 85608, San Diego, California 92186-5608, USA,

³Association Euratom-CEA, CEA Cadarache, F-13108, St Paul lez Durance, France,

⁴Associazione Euratom-ENEA sulla Fusione, C R Frascati, C P 65, 00044-Frascati, Italy,

⁵ Max Planck-Institute fur Plasmaphysik, EURATOM Association, D-85748 Garching,

Germany.

Operating at high βN (plasma pressure normalised to the Troyon limit), the ITER Hybrid and Steady State scenarios aim to use increased bootstrap current to enable burn times 1000s. To achieve this, and optimise fusion performance, these scenarios must have good energy confinement. ELMy H-mode plasma studies, with βN primarily in the range $1 < \beta N < 2$, have been described by scalings, such as IPB98(y,2), which are used for extrapolation to ITER. However, dedicated ELMy H-mode BN studies in JET and DIII-D did not find the negative dependence of confinement on βN in IPB98(y,2). Focusing on recent JET results, this paper describes the extension of confinement scaling to higher $\beta N = 2-4$ and to different scenarios. In the Hybrid scenario, JET has attained β MHD N = 3.6. Despite a different initial phase, plasma parameters evolve rapidly towards those of equivalent ELMy H-modes with confinement normalised to IPB98(y,2), $H_{98(y,2)}$ 1. Dedicated scans in this scenario have found decreasing confinement with increasing βN . This is strongest in the pedestal - consistent with gyro-fluid transport modeling which predicts βN independent core confinement. Study of a wider database suggests that the different scaling is related to operating at higher triangularity. In contrast, DIII-D and ASDEX Upgrade Hybrid scenarios have confinement that is not well described by IPB98(y,2). This implies that either the machines are in different confinement modes or that the Hybrid scenario has a different size scaling to IPB98(y,2). Both cases will be discussed. Candidate Steady State scenario plasmas with and without ITBs on JET have attained β MHD N = 3. Pedestal confinement losses associated with gas fuelled small ELMs are compensated by core confinement improvements from ITBs giving $H_{98(y,2)}$ 1. Without ITBs, $H_{98(y,2)}$ 1 plasmas are observed with increased confinement associated with low values of minimum safety factor. Confinement in all of the scenarios will be compared and conclusions for high βN , ITER operation discussed.

* see appendix of M Watkins et al, Fusion Energy 2006 (Proc 21st Int Conf Chengdu, 2006) IAEA

Study of Reactor-Relevant High-Beta Regime in the Large Helical Device

S. Sakakibara, K.Y. Watanabe, S. Ohdachi, Y. Suzuki, H. Funaba, Y. Narushima, K. Toi,

I. Yamada, K. Tanaka, T. Tokuzawa, R.Sakamoto, K. Ida,

H. Yamada, A. Komori, O.Motojima, and LHD Experimental Group

National Institute for Fusion Science, Toki 509-5292, Japan

The volume averaged beta value of 5 %, which is relevant to that required in a fusion energy reactor, has been achieved in the Large Helical Device (LHD). The obtained high beta plasmas are free from disruptive phenomena. The extended high beta regime serves to expand the understanding of physics concerning the beta-limit as well as to demonstrate the potential capability of a helical fusion reactor. The magnetic configuration was optimized in terms of MHD equilibrium, stability and transport properties [1]. Net-current free heliotron plasmas are free from current-driven instabilities unlike in tokamaks, therefore the characterization of pressure-driven instabilities and their control in the high beta regime are critical issues for stable steady state operation. The dominant low-m MHD modes move from the core region to the periphery when the beta increases, and the modes excited at the outermost resonance near the plasma edge are enhanced in the beta range over 4 %. A clear dependence of the amplitude of the mode on the magnetic Reynolds number has been found, which is close to that of the linear growth rate of the resistive interchange mode [1]. The increase in equilibrium currents with the increment of the beta value leads to the disorder of the peripheral magnetic field structure, which possibly limits the confinement region. This effect on the confinement property should be clarified experimentally. The comparison between the measured temperature profile and the magnetic field structure calculated by the 3D MHD code HINT has been done in order to investigate the effect of the change of the magnetic topology on the confinement. The temperature gradient in the periphery with a disordered magnetic field structure seems to be lower than that in the core region with nested magnetic surfaces. Although the clear beta limits due to stability and equilibrium have not been observed in the present beta range of experiments, it has been found out that the global confinement gradually deteriorates with the increment of the beta value. This is mainly due to the increment of the heat transport in the periphery, and the causal relation with enhanced resistive-g mode turbulence is discussed [2].

S.Sakakibara et al., *Fusion Science and Technology* **50** (2006) 177.
 K.Y. Watanabe et al., *Nuclear Fusion* **45** (2005) 1247.

The European turbulence code benchmarking effort:

Turbulence driven by thermal gradients in magnetically confined plasmas

G.L. Falchetto¹, B.D. Scott², P. Angelino¹, A. Bottino², T. Dannert³, V. Grandgirard¹,

S. Janhunen⁴, F. Jenko², S. Jolliet³, A. Kendl⁵, V. Naulin⁶, A.H. Nielsen⁶, M. Ottaviani¹,

M.J. Pueschel², D. Reiser⁷, T. Ribeiro² and M. Romanelli⁸

¹Institut de recherche sur la fusion par confinement magnétique, Association Euratom-CEA, CE-Cadarache, F-13108 Saint-Paul-Lez-Durance, France; ²Max-Planck-Institut für Plasmaphysik, IPP-Euratom Association, D-85748 Garching, Germany; ³Centre de Recherches en Physique des Plasmas, Association Euratom–Confédération Suisse, EPFL, CH-1015 Lausanne, Switzerland; ⁴Helsinki University of Technology, FIN-02015 TKK, Finland; ⁵Institute for Theoretical Physics, University of Innsbruck, Association Euratom-OAW, A- 6020 Innsbruck, Austria; ⁶Risø National Laboratory, DTU, DK-4000 Roskilde, Denmark; ⁷Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich, Germany; ⁸Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, UK

Computation of turbulence and transport in magnetised plasmas continues to make rapid advances. Global electromagnetic gyrofluid simulations are now possible, and global electromagnetic gyrokinetic simulations are beginning. Local "fluxtube" cases have been available for several years. Nevertheless, since the last major effort ten years ago there has been only sporadic work to benchmark the various approaches generally and individual implementations ("codes") particularly. We report the establishment of such an effort within the EFDA Task Force on Integrated Tokamak Modelling. Standard cases for both core and edge turbulence are included. Not only time trace information of anomalous fluxes are included, but the mode structure (spectra, radial envelopes, zonal flow amplitude, etc) are also compared. Results so far include good agreement between gyrofluid and gyrokinetic codes for core ion temperature gradient (ITG) driven turbulence but for trapped electron cases (driven mostly by the density gradient) the gyrokinetic models are needed as fluid ones predict stability. However, there is still an important disagreement on the core ITG zonal flow saturation level, even between gyrokinetic codes. More diagnostics on the global core cases will be reported and the main physical reasons for disagreement outlined. Edge results agree very well on collisionality scaling and acceptably well on beta scaling below the MHD boundary for cold-ion cases. They also agree well on the elements of mode structure. A sufficient number of warm ion edge turbulence codes for benchmarking is still lacking.

The support infrastructure for the benchmarking effort is also to be briefly described. This is a novel element allowing the continuously renewed effort required to assure quality control of ITER simulation in the longer term.

Investigating atomic properties of warm dense matter produced by laser

<u>P. Renaudin</u>¹, S. Bastiani-Ceccotti², L. Lecherbourg²⁻³, J. Fuchs², P. Antici², J.-P. Geindre², L. Lancia², A. Mancic², J. Robiche², R. Shepherd⁴, C. Blancard¹, P. Combis¹, P. Cossé¹, G. Faussurier¹, P. Audebert²

1 Département de Physique Théorique et Appliquée, CEA/DAM Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex, France

2 Laboratoire pour l'Utilisation des Lasers Intenses, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau cedex, France

3 Université du Québec, INRS énergie et matériaux, Varennes, Québec, Canada

4 Lawrence Livermore National Laboratory, University of California, Livermore CA 94550,

USA

Warm dense matter (WDM) is at the center of the density-temperature plane and, for some material, it is a barrier between different regions. Therefore a large number of technologic and scientific applications cross the WDM or need WDM properties. Recently, generation of WDM with minimized gradients has been obtained by irradiating solids with intense laser or ion beams. Short-pulse X-ray sources of a few ps duration emitting in the sub-5-keV range have been generated by irradiating high-Z materials with a sub-ps laser pulse. This offers the possibility to use point-projection time-resolved absorption spectroscopy for the study of spectral opacities of dense plasmas.

I will present results of recent X-UV pump-probe experiments performed in France with the 100 TW LULI facility. The experimental setup uses two ultra-fast laser beams to produce the plasma and the X-ray probe. The first ultra-short laser pulse was used to create a thin, high-density plasma slab fairly uniform in temperature or a short MeV ions bunch that allows an energy deposition in the bulk of a second target. Each shot allows to measure transmission spectra in the WDM regime.

The laser produced plasma is weakly ionised and density effects are not negligible. The continuum lowering modifies the ionization balance and pressure ionization tends to delocalize atomic orbitals. The temperature of the ions beam produced plasma is lower than the Fermi temperature. As the density remains high, the increasing temperature induces a change of the free electron degeneracy and a thermal smoothing of K-edge.

Warm dense matter generation by soft x-ray laser heating of thin foils

B.Rus, T.Mocek, M.Kozlová, J.Polan, P.Homer, M.Stupka Institute of Physics v.v.i./ PALS Centre, Prague 8, Czech Republic M.Fajardo Centro de Física dos Plasmas, Instituto Superior Técnico, Lisbon, Portugal R.W.Lee, M.E.Foord, H.Chung, S.J.Moon Lawrence Livermore National Laboratory, Livermore, USA

We present results of experimental and numerical studies of generation of cold, near solid density, plasmas by volumetric heating of thin foils by focused soft x-ray laser (21.2. nm, i.e., 58.5 eV) pulses. Time-integrated and time-dependent transmission of the soft x-ray radiation through aluminium and polyimide was experimentally investigated for intensities of up to 10¹² Wcm⁻². A simple diagnostics based on VIS camera was employed to assess temperature (<20 eV) of the heated matter. As the critical electron density for the 21.2-nm radiation is 2.4×10^{24} cm⁻³, the incident x-ray laser always encounters undercritical matter or plasma and heats the entire volume of the irradiated foil; the heating is near-isochoric in the beginning of the x-ray laser pulse. The initial absorption of the soft x-ray radiation is dominated by boundfree transitions (photoionization). The experimental data show significant difference in transmission of the 21.2-nm radiation through heated aluminium and polyimide. In Al, the transmission of heated matter essentially corresponds to that of the solid-state, however in polyimide the absorption increases significantly for intensities $>5 \times 10^{11}$ Wcm⁻². This increase is seen to occur transiently during the rising edge of the heating pulse, and was indentified as due to bound-bound transitions in Li-like C resonant with the soft x-ray laser. The experimental data were simulated by radiation hydrodynamic code Lasnex, using a hybrid equation of state model interfaced with a model solving non-LTE rate equations in a hydrogenic approximation. Results of the simulations were found to be in good agreement with the experimental data, providing benchmarked insight into the absorption mechanisms of intense soft x-ray radiation in matter heated from cold solid through the warm dense matter regime to plasma states.

An exact treatment of charged particle stopping in a plasma or The Coulomb logarithm revisited

Robert L. Singleton Jr.¹ ¹ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

The charged particle stopping power in a highly ionized and weakly coupled plasma has recently been calculated exactly to logarithmic accuracy by Brown, Preston, and Singleton (BPS) [1]. A very powerful regularization method from quantum _eld theory, called dimensional continuation, was employed in a novel way by BPS to calculate the Coulomb logarithm exactly, without appealing to *ad hoc* long- and short-distance cutoffs. The exact transition between the classical and quantum regimes was also included in the calculation. Since the technique of dimensional continuation might be unfamiliar to many plasma physicists, and since the same methodology can also be used for other energy transport phenomena, such as electron-ion temperature equilibration in a plasma [1, 3], I will spend the _rst part of the lecture reviewing the main ideas behind the calculation. I will then talk about the implications for ignition in Inertial Con_nement Fusion (ICF). The BPS stopping power gives longer ranges and deliverers less energy to the plasma ions than typical models in the literature, thereby making ignition harder to achieve. This could have implications for the Laser Mégajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States.

References

[1] L.S. Brown, D.L. Preston, and R.L. Singleton Jr., *Charged Particle Motion in a Highly Ionized Plasma*, Phys. Rep. **410** (2005) 237, arXiv: physics/0501084; For a detailed pedagogical exposition see also Ref. [2].

[2] R.L. Singleton Jr., *BPS Explained I: Temperature Relaxation in a Plasma*, arXiv: 0706.2680; *BPS Explained II: Calculating the Equilibration Rate in the Extreme Quantum Limit*, arXiv: 0712.0639.

[3] L.S. Brown and R.L. Singleton Jr, *Temperature Equilibration Rate with Fermi-Dirac Statistics*, Physical Review E **76** (2007) 066404, arXiv:0707.2370.

OVERVIEW OF ON-GOING LIL EXPERIMENTS

L. Videau¹, E. Alozy¹, I. Bailly¹, N. Borisenko⁴, J.Y. Boutin¹, J. Breil², S. Brygoo¹,
M. Casanova¹, A. Casner¹, C. Chenais-Popovics³, C. Courtois¹, S. Darbon¹, S. Depierreux¹,
P. Di-Nicola¹, F. Durut¹, A. Duval¹, J.L. Feugeas², C. Fourment², S. Gary¹, J.C. Gauthier²,
M. Grech¹, O. Henry¹, A. Hervé¹, S. Hulin², G. Huser¹, J.P. Jadaud¹, F. Jequier¹,
Ch. Labaune³, J. Limpouch⁵, P. Loiseau¹, O. Lutz¹, P.H. Maire², M. Mangeant¹, C. Meyer¹,
D.T. Michel¹, J.L. Miquel¹, M.C. Monteil¹, M. Naudy¹, W. Nazarov⁶, P. Nicolaï²,
O. Peyrusse², F. Philippe¹, D. Raffestin¹, C. Reverdin¹, Ph. Romary¹, R. Rosch¹,
C. Rousseaux¹, G. Soullié¹, S. Schmitt¹, G. Schurtz², Ch. Stenz², V. Tassin¹, C. Thessieux¹,
G. Thiell¹, M. Theobald¹, V. Tikhonchuk², J.L. Ulmer¹, B. Villette¹, R. Wrobel¹
¹Commissariat à l'Energie Atomique, DIF-CESTA-VA, 91297 Arpajon Cedex, France
³Laboratoire pour l'Utilisation des Lasers Intenses, 91128 Palaiseau, France
⁴Lebedev Physical Institute, 53 Leninskyi Prospect, Moscow, 119991 Russia
⁵FNSPE, Czech Technical University in Prague, 115 19 Prague 1, Czech Republic

⁶University of St Andrews, Fife KY16 9ST, Scotland, UK

The Ligne d'Intégration Laser (LIL) has been completed in 2002 and was first dedicated to laser physics experiments as a prototype for the future Laser MegaJoule. It delivers up to 15kJ at 3ω on target. We will present the experimental setup at the LIL facility and some plasma experiments carried out during 2005-2008. We have installed X-ray and visible-UV diagnostics allowing full characterization of the laser-plasma interaction (LPI) including the transmitted, scattered and backscattered 3w beams. During the first LPI campaign of 2007 with gas-filled Au-hohlraums, we have obtained high quality signals for both Raman and Brillouin measurements. Another LPI campaign in collaboration with the Institute of Laser Plasma was devoted to the study of plasma smoothing in foam targets. Measurement of the transmitted beam after propagation through the foam demonstrated the effectiveness of laser plasma smoothing. Supersonic propagation of the ionization wave has been evidenced using time-resolved side-on X-ray imaging. Two CELIA campaigns devoted to the study of the nonlocal electron-energy transport, used x-ray diagnostics : hard x-ray time-resolved Bragg spectrometer allowed a discrimination between different modellings of the heat flow. Finally, we will present the last installed standard diagnostic devoted to EOS experiments, which is composed of a pyrometer, a VISAR and a shock breakout measurement.

Anti-friction, Homogenization and Angular Momentum Transport in Tokamaks, Planets and the Solar Tachocline

P.H. Diamond

Center for Astrophysics and Space Sciences and Dept. of Physics University of California, San Diego, La Jolla, CA 92093-0424 USA

This lecture will address the ubiquitous phenomenon of 'up-gradient' momentum transport (i.e. anti-friction) which is known to occur in tokamak plasmas - i.e. inward convective momentum 'pinch' and stress, planetary atmospheres - i.e. sharpening of high latitude zonal flows by Rossby wave breaking, and the solar tachocline - i.e. a thin, stably stratified layer at the base of the convection zone formed by spin-down driven meridional cells and turbulent momentum transport. These seemingly unrelated phenomena each have the common elements of low 'effective Rossby number', quasi-geostrophic dynamics, and a governing homogenization or relaxation principle. Like the Taylor Relaxation Hypothesis in low- β MHD, homogenization principles provide conceptually simple guiding frameworks which facilitate understanding the complex dynamics of turbulent relaxation, evolution and transport. This lecture emphasizes the physics of homogenization principles and their application to tokamak and tachocline phenomena.

In the case of tokamak plasmas, the homogenization of toroidal angular momentum by a compressible turbulent flow (n.b. inhomogeneous $B_0(\underline{r})$ implies $\underline{V}_{\underline{E}\times\underline{B}}$ compressible!) enables the formulation of a turbulent equipartition (TEP) theory for angular momentum (L_{ϕ}) transport. This is equivalent to a homogenization theory for L_{ϕ}/B^{α} , $(\alpha \sim 2)$, which naturally leads to a toroidicity-induced inward pinch of toroidal angular momentum. Zonal flow formation, which is a common element of tokamak, planetary atmosphere and tachocline dynamics, is encapsulated by the principle of PV (potential vorticity) homogenization. Of particular relevance to tokamak phenomenology is the fact that PV homogenization encompasses the relative branching of total PV flux between guiding center flux (i.e. particle or thermal transport) and polarization charge flux (i.e. vorticity transport or, equivalently, Reynolds stresses), such as occurs in transport barrier formation. PV homogenization theory can be used to predict a critical fluctuation intensity gradient for the dominance of the polarization charge flux channel (i.e. transition threshold for transport barrier formation).

The tachocline is a more challenging application, on account of its dynamically active toroidal field. We note, though, that the details of PV and momentum transport are central to *both* tachocline formation scenarios (Spiegel-Zahn; Gough-McIntyre) and may also ultimately hold the key to deciding between these two competing approaches. Here, PV homogenization theory can be used to understand relevant but subtle questions, such as how strong an ambient magnetic field must be in order to convert 2D fluid turbulent dynamics (i.e. inverse energy cascade) to 2D MHD dynamics (i.e. forward energy cascade). Similarly, we show how stronger magnetic fields inhibit PV mixing and thus the formation of a zonal jet 'staircase' in the tachocline. This simple insight into PV transport processes in the unusual tachocline environment has profound complications for tachocline formation, and suggests that the fossil field scenario of Gough and McIntyre is the more viable one, since it limits tachocline penetration by fossil field magnetic stresses, rather than by turbulent viscosity.

Rotating twisted flux tubes buoyancy: comparison between the convective region of the Sun and the edge of a tokamak plasma

F. Alladio, A. Mancuso, P. Micozzi

Associazione Euratom-ENEA sulla Fusione, CP 65 Frascati (Roma), Italy

The filament state of magnetic field is the usual way for plasmas to avoid magnetic inhibition of convective overturning. However it requires Dynamo conversion of kinetic into magnetic energy and is therefore often associated with a plasma velocity shear layer.

In the Sun, isolated current carrying magnetic filaments (twisted flux tubes) are produced by the Solar Dynamo from a continuous strong toroidal field, sitting just below the radiative-convective transition, on the Sun rotation shear layer (Tachocline, $R_{Tach} \sim 2 \cdot R_{\odot}/3$ in terms of the solar radius, R_{\odot}). The twisted flux tubes, because of their internally suppressed convective transport, experience a net heating due to non-zero divergence of radiative heat flux at the radiative-convective transition; the mechanical equilibrium (magnetic curvature force vs. rotation) is altered and the filaments become buoyant: the emergence of the rotating magnetic filaments through the solar convective zone is influenced by viscosity, which adds external kink to the their internal twist. Some rotating filaments, after winding dragged by viscosity, in the more rapidly rotating convective zone, fall back into the Tachocline adding up to the continuous toroidal field; some emerge from the photosphere kinked and twisted, reconnect and produce flares.

In the mode of high magnetic confinement (H-mode), when a magnetic separatrix bounds the axisymmetric tokamak discharge and a sheared plasma rotation is present, magnetic filaments with concentrated internal currents (nonergodic twisted flux tubes, ELMs) are produced at integer values of the MHD safety factor (q=4,5,6) near the velocity shear layer (pressure Pedestal, at $\rho_{Ped} \ge 0.94 \cdot a_{Sep}$ in terms of the minor radius of the plasma boundary, a_{Sep}): again a Dynamo conversion of kinetic into magnetic energy is required in order to filament the current density at the Pedestal. The current carrying filaments break the unperturbed axisymmetric tokamak equilibrium, producing ergodicity in the edge plasma that surrounds them. The faster loss of energy from the ergodic plasma makes the nonergodic rotating magnetic filaments outboards buoyant: therefore they convect outboards from the Pedestal, without any further reconnections with the ergodic background plasma.

The buoyancy and motion model for the tokamak case will be compared with the buoyancy and motion model for the Sun.

Vertical angular momentum transport in astrophysical turbulent MHD accretion disks and the formation of large-scale collimated jets

Fabien Casse

Laboratoire AstroParticule & Cosmologie - Université Paris Diderot, France

Accretion is a quite common phenomenon that occurs in many types of systems across the Universe. Under the action of a central object (star, black hole, etc..), the plasma surrounding this object is prone to a rotating motion counteracting the gravity. The resulting disk (called "Keplerian" disk) exhibits an angular momentum distribution such that the plasma angular velocity is $\Omega \propto R^{-3/2}$, where R is the distance to the central object. Simultaneously to the presence of such disk, large-scale twin jets are often observed in these systems. These jets, flowing perpendicularly to the disk, are made of plasma and contain magnetic fields acting to maintain their excellent collimation. Accretion thus requires an anomalous transport of angular momentum coming from plasma turbulence. This turbulence is likely provoked by MHD instabilities occurring in the disk, and the ubiquitous connection observed between accretion and ejection indicates that this turbulence is also at the origin of the jets.

In this talk I will first present observational data that shed light on the mechanisms at work within a magnetized accretion disk launching large-scale magnetized jets. In particular I will show how important is the presence of the magnetic field in the jet in order to explain the marvelous collimation of these cylindrical flows occurring over distances larger than thousands of light-years. MHD models also show that these jets are an important contribution to the removal of the disk angular momentum. However, as I will discuss in this talk, usual MHD simulations showing the role of the magneto-rotational instability (MRI) as the source of the disk turbulence are not yet able to provide near-stationary solutions of fully accreting disks associated with the formation of jets. I will present a family of models where the turbulence is parameterized by the use of turbulent transport coefficients for viscosity and magnetic diffusivity such that these coefficients can be written as $v = \alpha C_s H$ where Cs is the local disk sound speed, H is the disk scale height and a a dimensionless parameter. In these models, it is possible to obtain near-stationary solutions where accretion is allowed thanks to a vertical angular momentum transfer from the disk into the jet. The angular momentum carried away by the jet is then used locally to speed-up mass and the twisting of the jet magnetic field due to the disk differential rotation provides a self-collimating mechanism for the jet just as in tokamaks. I will finish my talk by discussing the missing parts of accretionejection theory and the remaining issues regarding the description of disk turbulence.

Turbulent Transport and Coherence in MHD

David W. Hughes

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

A topic of fundamental importance in magnetohydrodynamic turbulence is mean induction. In plasma devices such as the RFP this may arise from interactions between small-scale fluid velocity and small-scale magnetic field in the presence of a strong imposed magnetic field. In an astrophysical context the interest is in the means of generating a magnetic field that has a significant component on scales large compared with those of the velocity field. For example, the Sun has a coherent global scale field that is generated, at least in part, by much smaller scale motions.

The concept of mean induction has traditionally been studied within the framework of mean field electrodynamics, a one-point closure model for MHD turbulence. A formal averaging of the magnetic induction equation leads to the new term (in comparison with the unaveraged equation) $\mathscr{E} = \langle \mathbf{u} \times \mathbf{b} \rangle$ — the mean electromotive force arising from correlations between small-scale fluid velocity and small-scale magnetic field. The system is then closed by linking \mathscr{E} to the mean (large-scale) magnetic field \mathbf{B}_0 in a formal expansion

$$\mathscr{E}_i = lpha_{ij}B_{0j} + eta_{ijk}rac{\partial B_{0j}}{\partial x_k} + \cdots$$

I shall discuss some of the problems involved in determining and interpreting the leading term in this expression — the so-called α -effect of mean field electrodynamics. Parity considerations show that the symmetric part of the α_{ij} tensor (the part responsible for field regeneration) can be non-zero only in turbulence lacking reflectional symmetry — a feature typically characterised by non-zero helicity. At small values of the magnetic Reynolds number *Rm* the relation between the α -effect and the helicity of the flow can be made explicit. The more interesting question though concerns the nature of α_{ij} at *high* values of *Rm*, the astrophysically relevant case.

I shall discuss two recent series of numerical experiments that explore the nature of the α effect in turbulent flows. The first explores rotating turbulent convection, and highlights the
difficulties in obtaining a significant α -effect even in flows possessing considerable helicity.
The problem turns out to be not one of *local* induction, but of very weak *average* induction.
The second series, motivated by the results from the investigations into convection, considers
more idealised, but more controllable flows, in which the influence of spatial correlation on the α -effect can be carefully examined. The issues explored are I believe extremely general ones
pertaining to the nature of averaging in highly turbulent flows.

Simulation of dust voids in complex plasmas

W.J. Goedheer and V. Land

FOM-Institute for Plasma Physics 'Rijnhuizen', Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands

A well-known phenomenon in dusty radio-frequency (RF) discharges under micro-gravity conditions is the generation of a void, a dust free region in the discharge centre. This void is generated by the drag of the positive ions that are pulled out of the discharge by the ambipolar electric field. In the last decade, the theoretical insight into the interaction of the ions with a negatively charged dust particle has reached a level that enables realistic simulations of these complex plasmas. We have used a hydrodynamic model for dusty radio-frequency discharges in argon to study the interaction between the dust and the plasma background. This model is based on expressions for the ion drag force and the dust charge that contain the effects of large-angle scattering, the ion flow speed and ion-neutral collisions [1]. With this model, we studied the plasma inside the void and obtained insight into the way it is sustained by heat generated in the surrounding dust cloud [2].

When this mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments [3]. Results of simulations of this collapse will be presented. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. In this case the potential well that contains the dust becomes very shallow and the internal pressure of the leads to large and relatively homogeneous Yukawa balls, containing more than 100.000 particles. The generation of a Yukawa ball and the evolution of a void at higher power levels can also be studied from the other side, that is, along a scheme where we start at a low power, inject dust, and increase the power. No hysteresis was observed in this transition.

The creation of large homogeneous Yukawa balls along this scheme possibly opens a route to studies of, for instance, wave propagation and phase transitions in a three dimensional dust structure.

[1] V. Land and W.J. Goedheer, New J. Phys. 8 (2006) 8.

[2] V. Land, W. J. Goedheer, Proc. 34th EPS Conf. on Plasma Phys., ECA vol. 31F, O4-010.[3] A.M. Lipaev et al., Phys. Rev. Lett. 98 (2007) 265006.
Dusty Plasmas under Effect of External Forces: Basic Phenomena and Applications

<u>Oleg F.Petrov</u>, Vladimir E.Fortov and Olga S.Vaulina Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia

The dusty plasma is a partly ionized gas with negatively or positively charged ($\sim 10^3 - 10^5 e$) dust particles of micron size ($\sim 1-10 \mu m$) that may form quasi-stationary plasma-dust structures similar to a liquid or a solid. In view of this, dusty plasma may be experimentally investigated on a kinetic level with high temporal and spatial resolution. As a result, dusty plasmas are good experimental models for studying the properties of non-ideal systems and for proofing existing empirical models and numerical results.

Investigations were directed on the study of dusty plasma structures and dynamics on kinetic level under action of different external forces (visible and uv radiation, magnetic and thermal fields, electron beam) in glow rf and dc discharges.

Results of experimental study of the dusty plasma kinematic viscosity and the diffusion are presented. A uniform flow of dusty plasma liquid was experimentally realized under laser beam action, and the results of analysis of the obtained data made it possible to estimate the viscosity coefficient of dusty plasma liquid.

The results are given of an experimental investigation of heat transport processes in fluid dusty structures in rf discharge plasmas under different conditions: for discharge in argon, and for discharge in air under an action of electron beam. The analysis of steady-state and unsteady-state heat transfer is used to obtain the coefficients of thermal conductivity and thermal diffusivity.

Experimental investigations of structures of monodisperse dust particles in dc lowpressure glow discharge at temperatures of liquid nitrogen (~ 77 K) and liquid helium (~ 4.2 K) are presented. Structural and dynamic characteristics of the cryogenic dust structures were measured.

The influence of high magnetic field on dusty plasma structures is now of great interest in the field of dusty plasma physics. In the present work the rotation of the dusty clouds and anomalous dust acceleration near the discharge tube wall in strong magnetic field was observed. This work was supported by the Russian Foundation for Basic Research (Grants No.06-02-17532, No. 06-08-01584 and No. 07-02-13600).

When can the Fokker-Planck equation describe anomalous or chaotic particle transport ?

<u>D.F. Escande¹</u> and F. Sattin²

¹ CNRS-Université de Provence, Marseille, France ² Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy

The Fokker-Planck Equation (FPE) is a basic model for the description of transport processes in several scientific fields. It has been used a lot in plasma physics to model chaotic and/or collisional kinetic effects. Furthermore, FPE backs up the diffusionconvection picture of anomalous transport in magnetized thermonuclear fusion plasmas. Though very popular, the drift-diffusive picture underlying FPE breaks down in some cases. This was shown for electron dynamics due to Langmuir waves [1], for the transport of tracer particles suddenly released in pressure-gradient-driven turbulence [2], and for pollutant transport in fluid dynamics. These facts triggered a series of studies where the Brownian paradigm was abandoned, and transport was described in terms of Lévy jumps, and of fractional diffusion models [3]. This sets the issue: when is FPE relevant for anomalous or chaotic transport, when is it not? This work [4] shows that, for particle transport ruled by chaotic Hamiltonian dynamics, FPE can be justified for generic particle transport provided that there is enough randomness in the Hamiltonian describing the dynamics. Then, except for 1 degree-of-freedom, the two transport coefficients of FPE (diffusion coefficient and dynamic friction) are largely independent. Depending on the kind and amount of averaging performed on it, the same dynamical system may be found diffusive or dominated by its Lévy flights. FPE may work even whenever the dynamics of individual particles exhibit strong trapping motion. Diffusion is justified by locality of trapping in phase-space, or by locality in velocity of particle resonance with fluctuating fields, then leading to a quasilinear estimate. If the system involves a particle source that is narrower than the mean random step of the true dynamics, FPE fails, while the density displays spatial features that are not related to the transport coefficients. If the width of the density distribution is of the order of the system size, there are indications that, even whenever Lévy flights rule the dynamics, FPE becomes a good description. Indeed Lévy flights bring efficiently into the system the information that the matter is lost outside of it.

- [1] D. Bénisti and D.F. Escande, Phys. Rev. Lett. 80, 4871 (1998)
- [2] D. del-Castillo-Negrete, B.A. Carreras, and V.E. Lynch, Phys. Plasmas 11, 3854 (2004)
- [3] D. del-Castillo-Negrete, Phys. Plasmas 13, 082308 (2006)
- [4] D.F. Escande et F. Sattin, Phys. Rev. Lett. 99, 185005 (2007).

Kinetic phase-space turbulence in space and laboratory plasmas

Alexander Schekochihin

Plasma Physics, 735 Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.

I will first discuss how the gyrokinetic theory, originally developed for fusion applications, is applicable to astrophysical and space plasma turbulence problems. I will then explain how the familiar "fluid" turbulence ideas such as the energy cascade are generalized for a kinetic turbulence in a weakly collisional plasma. I will introduce the concept of a cascade of generalised energy in a 5D phase space and explain how small-scale structure develops both in the real and velocity space ("the entropy cascade") and how this process is fundamental in the conversion of electromagnetic fluctuation energy into heat. Astrophysical applications are the dissipation range of the solar wind and the heating of minority ion species. I will discuss how theory and measurements of turbulence in space can help us understand the fundamental features of plasma turbulence, also applicable to the microturbulence in fusion devices.

Reference.

A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W. Hammett, G. G. Howes. E. Quataert, T. Tatsuno, Astrophysical Journal Supplement, submitted (2007) [eprint arXiv:0704.0044]

Star Trek plasma shields: Measurements and modelling of a diamagnetic cavity

<u>R. Bamford</u>¹, K. J. Gibson², A. T. Thornton², J. Bradford¹, R Bingham^{1,6}, L. Gargate^{1,3}, L..O. Silva³, R.A. Fonseca³, M. Hapgood¹, C. Norberg⁴, T. Todd⁵, R. Stamper¹

¹Space Plasmas, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K. ² Department of Physics, University of York, Heslington, York, YO10 5DD, U.K.

³Centro de Física dos Plasmas, Inst Superior Técnico, 1049-001 Lisboa, PORTUGAL ⁴ Umea University, Box 812, 981 28 Kiruna, SWEDEN.

⁵ EFDA-JET, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, U.K. ⁶Physics Department, University of Strathclyde, Glasgow G4 0NG.

Solar energetic ions are a known hazard to both spacecraft electronics and to astronauts health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell 'hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers.

Vaccum and plasma QED nonlinearities

M. Marklund

Department of Physics, Umeå University, SE–901 87 Umeå, Sweden

Classically, the vacuum constitutes a trivial nothingness. However, this notion dramatically changed with the marriage of quantum mechanics and special relativity. The natural theory for photon interactions with matter, quantum electrodynamics (QED), indeed shows that the vacuum has certain nontrivial properties [1]. Currently, laser intensities are developing rapidly [2], and systems such as ELI [3] and HiPER [4] is expected to take this development to a new level. Moreover, techniques such as harmonic focusing [5] and plasma induced ultra-short pulse generation [6, 7] could be able, using front-ends such as ELI or HiPER, to produce pulse intensities above the Schwinger limit $\sim 10^{29}$ W/cm² [8]. In fact, even current technology allows for laser induced pair creation, albeit in combination with accelerator generated electron beams [9]. Previous experiments on the quantum vacuum has used atomic nuclei or accelerator based high-energy techniques as a means for testing quantum field theory, and in particular QED. The future development of laser sources will in this sense give completely new tools for testing QED in the high-intensity regime. In light of this, new laser-based tests of quantum vacuum phenomena is described. Moreover, many environments in which such high fields are present also contain plasmas. Thus, the alteration of mode propagation and nonlinear dynamics due to quantum vacuum/plasma interactions, such as nonlinear photon splitting (i.e., frequency downconversion) will be reviewed.

- [1] M. Marklund and P. K. Shukla, Rev. Mod. Phys. 78, 591 (2006).
- [2] G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).
- [3] See the ELI website http://www.extreme-light-infrastructure.eu/ .
- [4] See the HiPER website http://www.hiper-laser.org/.
- [5] S. Gordienko et al., Phys. Rev. Lett. 94, 103903 (2005).
- [6] N. M. Naumova et al., Phys. Rev. Lett. 92, 063902 (2004).
- [7] B. Dromey et al., Nature Phys. 2, 456 (2006).
- [8] J. Schwinger, Phys. Rev. 82, 664 (1951).
- [9] D. L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997).

Phase resolved optical emission spectroscopy: Multi-frequency discharges and atmospheric pressure plasmas

Timo Gans

Centre for Plasma Physics, Queen's University Belfast, Northern Ireland, UK E-mail: <u>t.gans@qub.ac.uk</u>

Despite its technological significance, important aspects of power coupling and ionisation mechanisms in radio-frequency (rf) discharges are not yet fully understood. Of particular interest are multi-frequency discharges and recently developed homogenous non-equilibrium rf discharges at ambient pressure. Insight into the complex plasma dynamics requires close combination of advanced diagnostics and specifically adapted simulations. Phase resolved optical emission spectroscopy (PROES) in combination with numerical computer simulations reveal details of the dynamics on a nanosecond time scale within the rf cycle.

Multi-frequency discharges provide additional process control for technological applications. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. The nature of these coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are observed.

Recently developed rf discharges at ambient pressure bear enormous potential for future technological applications providing high reaction rates without the need of expensive vacuum systems. Fundamental discharge mechanisms are, however, only rudimentarily understood. The atmospheric pressure plasma jet (APPJ) is a homogeneous non-equilibrium discharge. A specially designed rf μ -APPJ provides excellent optical diagnostic access to the discharge volume and the interface to the effluent region. This allows investigations of the discharge dynamics and energy transport mechanisms from the discharge to the effluent. PROES measurements in the discharge volume show a complex combination of different excitation and ionisation mechanisms controlled by the dynamics of the plasma boundary sheaths. Interesting interaction phenomena between the two plasma boundary sheaths are observed.

Funding: EPSRC, DFG, SFI

Electrical Breakdown: Experiments and Modeling

Erik Wagenaars, Wouter Brok, Mark Bowden, Jan van Dijk, Joost van der Mullen, and Gerrit Kroesen Eindhoven University of Technology, Netherlands

Plasma breakdown is a highly transient process that involves particles drifting in electric fields, charge multiplication in electron avalanches and moving ionization fronts. The driving force for these processes is the electric field in the discharge volume. The temporal evolution of the electrical field strength and other parameters have been studied by in-situ diagnostics as well as numerical modeling.

A pulsed discharge between parabolic, metal electrodes in a low pressure argon environment has been studied by light emission imaging with an ICCD camera. This diagnostic provided time- and space-resolved information on the characteristic features of the breakdown process. Different phases in the breakdown process were identified. Firstly, the build-up of a light emission region in the discharge gap in front of the anode, followed by a light front crossing the electrode gap from anode to cathode and finally, a stable discharge, which gradually covers the cathode surface. The experimental results also showed that before the main breakdown process started, a weak flash of light could be observed around the anode. This stratified pre-breakdown light emission occurred during the rise of the applied voltage, but before the breakdown voltage was reached. The origin of this feature was found to be electron avalanches seeded by volume charges left over from previous discharges in combination with the specific discharge geometry used in our experiments.

Additionally, a new diagnostic was developed to measure electric field distributions during the breakdown phase of a discharge. With this diagnostic, electric field strengths were determined by measuring Stark effects in xenon atoms using laser-induced fluorescence-dip spectroscopy. Stark shifts of up to 4.8 cm-1 (160 pm) were observed for *ns* and *nd* Rydberg states, with principal quantum numbers ranging from 12 to 18. This corresponds to electric fields between 250 and 4000 V/cm, which were measured with an accuracy of about 50 to 150 V/cm.

For the first time, quantitative, direct measurements of the evolution of electric field during breakdown were obtained. Electric fields between 0 and 1600 V/cm were measured with a resolution of 200–400 V/cm, depending on the magnitude of the electric field. These experiments showed that the ionization front, already observed in the ICCD imaging experiments, is sustained by a spatially narrow, rapidly moving region of strong electric field. Additionally, this ionization front did not completely modify the potential distribution in the discharge gap; the discharge continued developing towards a steady-state after the ionization front crossed the gap.

The discharge was also modeled numerically using a fluid code and a hybrid fluidparticle code. The prebreakdown flash is modeled with the hybrid model. It is caused by the charges that remained in the volume from previous pulses. The model results correctly reproduce the striations in the electron energy and density, which are found to occur due to the specific electric field configuration of the electrodes in the discharge chamber. The crossing of the light front is described with the fluid model. Ionization avalanches that start at the cathode due to secondary electrons cause a space charge that is largest near the anode and starts to affect the electric field there first. This extends the anode potential toward the cathode and is observed as a moving front. The results of both models agree qualitatively with the experimental observations.

Turbulence measurements in fusion plasmas

G.D.Conway

Max-Planck Institut für Plasmaphysik, Euratom-Association IPP, Garching, D-85748, Germany

Turbulence measurements in magnetically confined toroidal plasmas have a long history, and indeed relevance due to the role of turbulence induced anomalous transport on particle, energy, impurity and momentum confinement. Turbulence - the microscopic random fluctuations in particle density, temperature, potential and magnetic field - is generally driven by gradients or sheared flows. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicate that non-linear interactions within the turbulence generate large scale "zonal" flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An introduction to turbulence basics will be given, together with an overview of the current status of plasma turbulence measurements in tokamak/stellarator fusion devices highlighting recent developments and outstanding problems. Emphasis will be given to measurement techniques, such as new microwave based diagnostics for density and electric field fluctuations in the closed flux surface confinement region.

Aspects of stochastic transport in laboratory and astrophysical plasmas

Karl H. Spatschek* Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf D-40225 Düsseldorf, Germany

Anomalous transport belongs to the key problems in plasma research and nuclear fusion applications. During the last decades, considerable progress was reported in understanding basic features. Since in general analytical evaluations based on turbulence models are very difficult, numerical simulations become more and more important. Fusion-orientated plasma physics leads to a rich data base with many hints for fundamental transport scaling. Anomalous charged particle transport is also a long-standing problem in astrophysical issues. A variety of observational evidences, such as low-energy cosmic ray penetration into the heliosphere, the transport of galactic cosmic rays in and out of the interstellar magnetic field, the Fermi acceleration mechanism, exist which await full theoretical understanding.

A possible approach to the problem of anomalous plasma transport is to consider the (passive) motion of (test) particles under the influence of given perturbations. Such a treatment is quite common in fluid turbulence where passive motion of scalars, vectors, particles, etc has been investigated extensively. In fusion-orientated plasma physics, there exists an additional, qualitatively important reason to investigate particle motion in given stochastic fields. Perturbations in the magnetic field structure are more or less unavoidable because of errors in the coil arrangements of the devices. In addition, and recently that aspect became very important, additional coils are being installed in tokamaks to control the particle and heat loads on the walls via magnetic stochastization of the edge. The strength of the magnetic field fluctuations may be quite small, e.g. less than one-tenth of a percent of the zeroth-order confining field, for a strong influence on transport. It turns out that perpendicular fluctuations in the magnetic field are effective channels of parallel diffusivity in perpendicular direction.

The proposed talk reviews the present state of art of stochastic transport theory in fluctuating electric and magnetic fields. It dwells on recent developments such as, e.g., non-diffusive motion along tangles, Lagrangian closures, trapping and percolation limit, relativistic particle drifts, generation of radial electric fields, non-Gaussian magnetic field statistics, pitch angle scattering, and control of stochasticity.

*in collaboration with S. Abdullaev, M. Neuer, A. Wingen

Compatibility of ITER Scenarios with an all-W Wall

O. Gruber for the ASDEX Upgrade Team

MPI für Plasmaphysik, EURATOM Association IPP, D-85748 Garching, Germany

The wall material mix of the present ITER design tries to optimize the use of the armour materials beryllium, carbon and tungsten at appropriate positions. This concept will be tested in the ITER like wall project at JET. But a future reactor cannot rely on low-Z plasma facing components due to the high erosion and - in case of carbon - tritium co-deposition and neutron damage. The tungsten programme at ASDEX Upgrade emphasizes the plasma wall interaction, its implications for the plasma operation and the compatibility of ITER relevant scenarios in an all-metal divertor tokamak, including the characterization of the transition from a carbon to a W machine and the behaviour of different heating methods. Main elements are the extension of the working space of radiatively cooled integrated scenarios (using impurity seeding) and advanced operation modes as the improved H-mode (hybrid scenario) and H-modes with internal transport barriers. Starting with the 2007 campaign all PFCs including the bottom divertor targets are equipped with W coated graphite tiles.

Restarts were successfully performed without boronizations strengthening the credibility of possible operation with a W wall. The ITER baseline H-mode scenario was established over a wide density range with plasma currents up to 1 MA, H_{98P} ~1, a radiation fraction of about 60% and ITER compatible moderate W concentrations below 3·10⁻⁵ using NBI and central wave heating. The divertor is now the largest W source, but this source plays only a minor role for the tungsten in the core plasma. The removal of all macroscopic carbon sources facing the plasma led to a reduction of the C content to about 4 per mille. Applying ICRH, results in large W influxes due to sputtering from light impurities accelerated by electrical fields at the ICRH antennas. ICRH operation could be optimized using large plasma-structure distances and gas puffing close to the antennas.

High performance improved H-modes over the full ITER relevant parameter regime in v*, β_N and n_e/n_{GW} as well as ion-ITBs were extensively investigated in previous campaigns with nearly complete W coverage using boronization to transiently suppress W sources. Applying central ECRF of 2 MW in the all-W machine allowed us to keep the central peaking of the W concentration low, to produce electron-ITBs and to achieve high confinement phases of improved H-modes with H_{98P}≈1.2-1.3 even without boronization. In improved H-modes the plasma energy was limited to $\beta_N \approx 2$ at the presently reduced heating power.

To elucidate the influence of a high-Z wall on all ITER relevant scenarios, especially the advanced operation modes, and to extend the working space in plasma shaping, density and beta the presently available power supplies for PF coils and heating systems was enhanced by 30 MVA and a new installed 1 MW gyrotron will allow more than 3 MW ECRF. Additionally, after the repeated restart without boronization this tool will be used again to improve the discharge conditions at low collisionality, in particular improved H-mode studies.

Three Dimensional Transport Analysis for ELM Control Experiments in ITER Similar Shape Plasmas at Low Collisionality in DIII-D*

O. Schmitz for the TEXTOR and DIII-D Teams

Research Center Jülich GmbH, IEF-Plasma Physics, 52428 Jülich, Germany

The mitigation of large type-I edge localized modes (ELMs) is important to maintain long term integrity of the ITER first wall. At the DIII-D tokamak, application of resonant magnetic perturbation (RMP) was pioneered as a tool to control edge transport and thereby the ELM characteristics [T.E. Evans, *et al.*, Nucl. Fusion **48**, 024002 (2008)]. In this contribution we present recent results from experiments in ITER similar shape plasmas with high average triangularity ($\overline{\delta} = 0.56$) at low ITER similar collisionality ($v_e^* \leq 0.2$). Here complete ELM suppression was achieved robustly at an edge safety factor of $q_{95} \sim 3.5$. The resonant window width $\Delta q_{95} \sim 0.1$ -0.3 was increased by a factor 2-4 by optimizing the RMP spectrum and increasing the RMP amplitude. In general suppression of ELMs is achieved via a reduction of the pedestal pressure gradient below the stability limit of the peeling ballooning modes, mainly by a decrease in pedestal density while pedestal temperatures slightly increase.

The transport characteristics in the perturbed, three dimensional magnetic field structure are analyzed in a collaborative approach by comparison of experimental and numerical results from TEXTOR-DED and DIII-D. For both devices, modelling of the magnetic topology and transport modelling with the E3D thermal transport code and with the plasma and neutral transport code EMC3-EIRENE were carried out. From this comparative analysis the magnetic topology suggests for DIII-D three radial transport domains for normalized flux Ψ_N : *resonant magnetic island chains* in $0.7 < \Psi_N < 0.85$ and a *highly stochastic volume* closer to the separatrix ($0.85 < \Psi_N < 0.99$) lead to enhanced radial transport. The last step towards the divertor target is governed by parallel transport along *open magnetic field lines* which end in a striated, non-axisymmetric pattern of the perturbed separatrix. They have a connection length $L_c \leq 500$ m of the same order as the thermal correlation length $L_t \simeq 400$ m and small compared to the electron mean free path $\lambda_e \sim 10^3$ - 10^4 m. From field line tracing it is shown that they penetrate as deep as $0.8 \leq \Psi_N \leq 1.0$ in the perturbed boundary. Therefore large parallel heat conduction and a clear imprint of the striated separatrix in the target heat flux were expected.

At TEXTOR-DED a striation of heat and particle fluxes caused by the helical ergodic divertor separatrix was observed for high $v_e^* > 0.9$ [M. Jakubowski, *et al.*, J. Nucl. Mater. **363-365**, 371 (2007)]. In DIII-D these fluxes also show striation during complete ELM suppression at high v_e^* . However, at low v_e^* a weak heat transport to the outer lobes of the separatrix and strong parallel particle flux along all lobes of the separatrix are measured. Here, the stochastic domain is not well-connected thermally to the separatrix structure at the target while parallel particle fluxes yield a strong particle loss from the pedestal region. In contrast, large heat and particle flux along the open field lines was detected for low v_e^* also in strike point splitting of particle and heat flux for (a) interaction of the RMP with ELM filaments and (b) during pellet injection. Such an enhanced radial heat transport – which was originally anticipated to be dominant for transport in a stochastic magnetic boundary – is not apparent during ELM suppression. To explain these counter-intuitive experimental observations two mechanisms are discussed here: a limitation of the parallel heat conduction [M. Tokar, et al., Phys. Rev. Lett. **98**, 095001 (2007)] and a screening of the external RMP field by plasma rotation [A. Cole, et al., Phys. Plasmas **13**, 32503 (2006)].

^{*}Work supported by DFG grant SFB591 and the U.S. Department of Energy under DE-FC02-04ER54698.

Beta Limit in JET

M P Gryaznevich¹, and JET-EFDA Contributors^{*} JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK ¹Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

Advanced tokamak regimes are associated with increased normalised beta, $\beta_N = \beta_t B_t a / I_p$ ($\beta_t = 2\mu_0 / B_t^2$) and are often limited by MHD instabilities. Although the presence of a conducting wall increases this beta limit, it is important to know the no-wall ideal β -limit to be able to prevent/avoid the most dangerous pressure-driven disruptions in JET and ITER.

Systematic studies of the no-wall beta limit have been carried out on JET, for the first time in tokamaks, by measuring the plasma response to an externally applied helical magnetic perturbation. This Resonant Field Amplification (RFA) is strongly enhanced when a plasma exceeds the ideal no-wall stability limit or an ideal beta-limited determined by other modes, so it can be used as an indication of the beta limit. This method of the beta limit identification has been routinely used in scenario development of high-beta discharges on JET in several advanced regimes: the hybrid low-shear regime with q(0) close to 1, the high-beta low shear regime with less then or $\sim 1 < q(0) < 2.0$ and in a reversed shear ITB regime.

It was shown that increase in q(0) results in significant reduction in the measured beta limit going down to $\beta_{\lim}{}^{RFA} \sim 1.5$ at q(0), or q_{min} in a case of a slightly reversed shear, going down close to 2. Numerical stability simulations based on JET pulses have been performed and confirm this observed trend. It was observed that the measured β -limit has been routinely exceeded on JET by ~ 10%.

Comparison of beta limits in different advanced regimes has been made and shows similar beta limit in hybrid and high-beta no-ITB scenarios for same q(0). However, for the ITB scenario, the q_{min} has been found to be more relevant to characterise the beta limit.

The method developed for β -limit identification will be used to carry out β -limit dependence studies on q and pressure profile in AT scenarios on JET and to optimise plasma parameters in development of high performance regimes.

This work was funded by the UK Engineering and Physical Sciences Research Council and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

^{*} See annex to M.Watkins et al, Fusion Energy 2006 (Proc. 21st IAEA Conf., Chengdu, 2006) IAEA Vienna.

Physics issues in the new high current regimes on RFX-mod.

M. Valisa and the RFX team

Consorzio RFX, Associazione Euratom-ENEA sulla fusione 35127 Padova- Italy

Remarkable progress has been reported in the recent past by the Reversed Field Pinch community worldwide, with enhanced plasma performances and new contributions to the wider fusion environment in terms of both physics understanding and plasma control. Results of general interest regard themes like MHD active control, current profile control, density limit, fast particles confinement, spontaneous momentum generation, core transport barriers, electrostatic instabilities, edge turbulence, spontaneous transition from magnetic chaos to order, to name some of them. This paper describes in particular the physics issues emerging in RFX-mod where for the first time good quality RFP plasmas with a 1.5 MA current have been obtained. The progress towards higher currents has been permitted by the improvement of the model-based algorithm that drives as an artificial shell the large set of saddle coils tightly wrapping a conducting shell of 50 ms penetration time. Successful phase decoupling and amplitude reduction of the m=1 tearing modes resonating in the core has lead to improved performance, reduced plasma-wall interaction and discharge duration well beyond the wall penetration time with full suppression of the Resistive Wall Modes. At high plasma current and with the improved magnetic boundary the MHD spectrum spontaneously evolves towards the Quasi Single Helicity regime, that is toward a better ordered magnetic topology, favored by the higher Lundquist number. The boundaries of the magnetic island with the dominant helicity are a transport barrier for the electron energy, with temperatures beyond 1 keV at densities of 2.10¹⁹ m⁻³. The island boundaries have been studied with the aid of a field line tracing code and investigated at the light of electrostatic turbulence theories. QSH islands generated in induced enhanced confinement events can become remarkably large and represent an interesting possibility for an advanced RFP scenario. The m=0 modes, resonating at the reversal surface, have been studied in particular for their relation with the Greenwald density limit. Where m=0 modes induce an inward excursion of the Last Closed Flux Surface, at high density, locally increased density, enhanced radiation and converging ExB flows are seen, similarly to the MARFE. The thermal instability that develops, expanding towards the plasma core ultimately quenches the discharge, in a non disruptive way. Control of the m=0 activity is speculated to allow the overcome of the density limit.

Integrated modelling of ITER steady-state scenarios

J. Garcia, G. Giruzzi, J.F. Artaud, V. Basiuk, J. Decker, F. Imbeaux, Y. Peysson, M. Schneider Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, F-13108 St. Paul lez Durance.

Steady-state scenarios in ITER combine a high number of challenges, which are not only technical, but mainly conceptual. The simultaneous constraints of vanishing loop voltage and $Q \ge 5$ can only be satisfied for extremely high bootstrap current fractions (significantly higher than 50 %), which, in turn, are more likely to be obtained in the presence of an Internal Transport Barrier (ITB). In ITER, ITBs would be associated to negative magnetic shear rather than to rotation shear, owing to the lack of a powerful torque source. This implies that the control of the current density profile by non-inductive current drive (CD) is essential to sustain ITBs for a long time, but this is notoriously difficult when the bootstrap fraction is the dominant contribution (current alignment problem). Although various scenarios have been considered for steady-state operation on ITER, no steady sustainment of ITB for times of the order of 3000 s, with the amount of additional power expected on ITER, has been documented in simulations so far.

In this work, state-of-the-art integrated simulations with the CRONOS suite of codes [1] are used to study the physics involved in the ITB sustainment, and to identify the main obstacles to the establishment of a steady-state scenario in ITER. These simulations integrate, for the first time, advanced computational modules such as MonteCarlo calculations of the alpha particle distribution function and a 3D Fokker-Planck code for Lower Hybrid CD (LHCD), which proved essential for the correct simulation of this complex non-linear system. Since low rotation levels are expected in ITER, the empirical transport model used only takes into account the anomalous transport reduction due to negative magnetic shear. It is shown that any current driven inside the ITB leads to the progressive shrinking and disappearance of the barrier (current alignment current [2]). This physics property has strong implications on the choice of the current drive sources: for instance, Neutral Beam Current Drive, which is naturally localised in the central part of the plasma, proves to be of little use in these scenarios.

In contrast, a pure Radio Frequency (RF) scenario is proposed using 20 MW of Ion Cyclotron Resonant Heating (ICRH), 20 MW Electron Cyclotron Resonant Heating (ECRH) and 13 MW of LHCD. Within a framework of reasonable assumptions, it is shown that such a power combination provides a solution of principle to the current alignment problem. The main feature of this scenario is that there is a minimum negative magnetic shear, s=-0.8, to steadily sustain the ITB for 3000s, below which, low performance inductive scenarios are recovered. The actual design of the ECRH power system in ITER can provide such a negative magnetic shear at ρ =0.45 through Electron Cyclotron Current Drive (ECCD), which leads to a clear dependence of the temperature gradient (with a well defined threshold) on the P_{ECH}/<n_e> parameter. The threshold obtained for the ECRH power can be characterized as a second order phase transition as it has been done previously in the ITB formation of other completely different fusion devices as, e.g., the Large Helical Device (LHD) [3].

[1] V. Basiuk et al., Nucl. Fusion 43 822 (2003).

[2] W.A. Houlberg et al., Nucl. Fusion 45 1309 (2005).

[3] J. Garcia et al., Phys. Rev. Lett. 96 105007 (2006).

Radiation Pressure Acceleration by Ultraintense Laser Pulses

T. Liseykina

Institute of Computational Technologies SD RAS, Novosibirsk, Russia

The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and collimation. Regimes based on Radiation Pressure Acceleration (RPA) might be the dominant at ultrahigh intensities [1] and be most suitable for specific applications. These regimes may be reached already with presentday intensities using circularly polarized pulses [2, 3] thanks to the suppression of fast electron generation, so that RPA dominates over sheath acceleration at any intensity.

We present the results of a comparison of 1D, 2D and 3D PIC simulations for circularly (CP) and linearly polarized (LP) pulses, which evidentiate the different features of ion acceleration and help in deeper understanding of RPA mechanisms. A detailed 1D study of the interaction of the CP laser pulse with thin, solid density targets is performed in order to find the optimal thickness of the target as well as scaling for ion energy and efficiency vs laser and plasma parameters. The 2D and 3D PIC simulations show that the onset of density rippling at the target surface is affected by the pulse polarization. Rippling of the front surface was observed in early simulations of high intensity laser pulse interaction with overdense plasmas [4]. Recently this topic has been revisited for thin plasma foils accelerated in the radiation-pressure-dominated regime [5]. Explanation of the surface rippling have been mostly based on Rayleigh-Taylor like instabilities due to the strong acceleration of the target driven by the radiation pressure. The case of CP is most adequate to test such theoretical description and its scaling with laser and plasma parameters since radiation pressure dominance holds at any intensity. On the other hand, the differences observed between CP and LP suggest that additional effects are at play for linear polarization. These effects might be due to fast electrons or to stimulated surface instabilities.

- [1] T. Esirkepov, M. Borghesi, S. V. Bulanov et al., PRL, 92, 175003 (2004)
- [2] A. Macchi et al., arXiv:physics/0701139 (2007); T. V. Liseykina, A. Macchi, App. Phys.
 Lett., 91, 171502 (2007); A. Macchi, F. Cattani et al., PRL, 95, 195001 (2005)
- [3] X. Zhang et al., Phys.Plasmas, 14, 073101 (2007); A. P. L. Robinson et al., New J.Phys., 10, 013021 (2008)
- [4] S.C.Wilks et al., PRL, 69 (1992); S.C.Wilks, W.L.Kruer, IEEE J.Quant.Electr., 33 (1997)
- [5] F. Pegoraro, S. V. Bulanov, PRL, 99, 065002 (2007)

One-to-one direct modelling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations

R. A. Fonseca^{1,2}

¹DCTI/Instituto Superior de Ciências do Trabalho e da Empresa, Lisboa, Portugal ²Instituto de Plasmas e Fusão Nuclear/Instituto Superior Técnico, Lisboa, Portugal

There are many astrophysical and laboratory scenarios where kinetic effects play an important role. These range from astrophysical shocks and plasma shell collisions [1], to high intensity laser-plasma interactions, with applications to fast ignition [2] and particle acceleration [3,4]. Further understanding of these scenarios requires detailed numerical modelling, but fully relativist kinetic codes [5] are computationally intensity, and the goal of one-to-one direct modelling of such scenarios and direct comparison with experimental results is still difficult to achieve.

I will discuss the issues involved in performing such numerical experiments, focusing on what needs to be achieved for one-to-one direct modelling. I will also discuss the computational requirements involved, and present the recent developments in the efficiency and algorithms of the simulation tools, pointing out some future directions (e.g. dynamic load balancing, high-order interpolation and boosted frame simulations). Finally, I will present recent simulation work, illustrating these techniques and key results, in both laser wakefield acceleration, and astrophysical shock acceleration.

In collaboration with, M. Fiore, F. Fiuza, J. Martins, S. F. Martins, F. Peano, J. Vieira, L. O. Silva, J. Tonge, F. S. Tsung and W. B. Mori.

- [1] R. A. Fonseca et. al., POP 10, 1979 (2003); L. O. Silva et. al., ApJL 596, L121 (2003)
- [2] C. Ren et al., PRL 93, 185004 (2004)
- [3] L. O. Silva et al., PRL 94, 015002 (2004)
- [4] F. S. Tsung et al., PRL 93, 185002 (2004); W. Lu et. al., PRSTAB 10, 061301 (2007)
- [5] R. A. Fonseca et al., LNCS 2331, 342 (2002)

Quantum vacuum effects in strong laser beams

<u>A. Di Piazza</u>, K. Z. Hatsagortsyan, E. Lötstedt, U. D. Jentschura, and C. H. Keitel *Max-Planck-Institut für Kernphysik, Heidelberg, Germany*

In view of the increasingly stronger available laser fields it is becoming feasible to use them to probe the nonlinear dielectric properties of vacuum as predicted by quantum electrodynamics (QED) and to test QED in the presence of intense laser beams. We first study the process of lightby-light diffraction mediated by the virtual electron-positron pairs present in vacuum [1]. The typical laser intensity at which these nonlinear vacuum effects are predicted to become apparent is of order of $I_{cr} \sim 10^{29}$ W/cm². We investigate a mechanism to enhance vacuum polarization effects (VPEs) at a given laser intensity by exploiting the dielectric properties of a cold plasma [2]. Our results show a large enhancement of VPEs in a plasma with respect to those predicted in pure vacuum when the frequency of the probe field (that in our case is also the field that polarizes the vacuum) approaches the plasma frequency. Moreover, we analyze the process of photon splitting in a laser field as a consequence of the vacuum-mediated interaction between the photon and the laser field. The possibility of the experimental observation of this process is also discussed [3].

The study of the properties of quantum vacuum is closely related to the possibility of testing QED in the presence of strong background fields. We investigate in detail two processes which soon could be in principle feasible experimentally: laser photon merging in laser-proton collisions [4] and laser-assisted bremsstrahlung [5]. In the first case, we show that laser photons merge due to VPEs when interacting with the electromagnetic field of a high-energy proton, manifesting an observable, non-perturbative dependence on the laser field parameters. In the second one, the dramatic influence of the presence of a strong laser beam on the bremsstrahlung process is pointed out.

- [1] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 97, 083603 (2006).
- [2] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Plasmas 14, 032102 (2007).
- [3] A. Di Piazza, A. I. Milstein, and C. H. Keitel, Phys. Rev. A 76, 032103 (2007).
- [4] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 100, 010403 (2008).
- [5] E. Lötstedt, U. D. Jentschura, and C. H. Keitel, Phys. Rev. Lett. 98, 043002 (2007).

CHARGING of AEROSOLS and NUCLEATION IN ATMOSPHERIC PRESSURE ELECTRICAL DISCHARGES

JP. Borra

Laboratoire de Physique des Gaz et Plasmas UMR CNRS-Univ. Paris-Sud, Orsay, F-91405 Supélec, 3 Rue Joliot Curie, Gif-sur-Yvette/, F-91192, France

The goal of this presentation is to highlight potential applications of plasmas produced in Atmospheric Pressure Electrical Discharges (dc corona, streamer and spark filamentary discharges, as well as for ac filamentary and homogeneous Dielectric Barrier Discharges).

At first, respective properties of electrical regimes that can be induced in such discharges are briefly depicted to introduce applications of these atmospheric pressure plasmas in aerosol processes for Materials and Environment (filtration, diagnostics).

Then, the charging mechanisms of submicron sized particles by collection of ions are presented in corona, post-corona and Dielectric Barrier Discharges. In such defined electric field and ion densities profiles, both field and diffusion charging laws are presented to account for the related potential applications of controlled kinematics of charged aerosol (electro-filtration, homogeneous/focussed deposition and coagulation to produce composites).

The last part addresses key parameters controlling both the formation by nucleation and the growth by coagulation of particles in plasmas. Two sources of vapour leading to nucleated nano-particles are depicted in Atmospheric Pressure Electrical Discharges: (i) when dc streamer and spark filamentary discharges as well as ac filamentary Dielectric Barrier Discharges interact with the surface of electrodes or dielectrics, and (ii) when both filamentary and homogeneous Dielectric Barrier Discharges induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. It will be shown how composition, size and structure of primary nano-particles as well as the final size of agglomerates are related to plasma parameters (Energy, number per unit surface and time and thermal gradients around each filament as well as the transit time). Once produced, so-formed nano-sized aerosol can either be deposited in the plasma for thin films coatings or kept in suspension to produce fine powders, depending on both charging and electro-thermal collection.

PLASMA SYNTHESIS OF SILICON QUANTUM DOTS FOR PRINTED ELECTRONICS AND PHOTOVOLTAICS

U. Kortshagen

University of Minnesota, Mechanical Engineering, Minneapolis, MN, USA

Plasmas are a unique source of semiconductor nanocrystals. Exothermic surface reactions combined with slow cooling at low pressures selectively heat nanoparticles immersed in plasmas to temperatures exceeding the gas temperature by hundreds of Kelvin. This enables the synthesis of nanocrystals even of high melting point materials. Moreover, the electrical charging of nanocrystals allows for the generation of non-agglomerated nanoparticles, conserving the size-dependent properties of quantum dots.

We have developed a plasma approach for the synthesis [1], electrical doping, and surface functionalization of silicon nanocrystals [2]. Silicon crystals are generated in a continuous flow-through RF-plasma process, and injected into a second capacitively coupled RF-plasma, in which organic molecules are grafted to the hydrogen-terminated nanocrystal surfaces. The so functionalized nanocrystals are readily soluble in organic solvents and form stable silicon nanocrystal colloids or "inks."

This talk will equally focus on a description of the plasma process and a discussion of the materials properties. We will discuss issues of nanoparticle charging and heating in plasmas as well as aspect of dopant incorporation, activation, and location within the nanocrystals. Finally, we will review materials properties of functional semiconductor films prepared from plasma-synthesized and functionalized nanocrystals.

This work was supported by the National Science Foundation under award CMMI-0556163, IGERT grant DGE-0114372, and NIRT grant CBET-0506672. Partial support was provided by the MRSEC Program of the National Science Foundation under Award Number DMR-0212302 and by the Initiative for Renewable Energy and the Environment under grant LG-C5-2005.

- [1] L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Letters 5, 655 (2005)
- [2] L. Mangolini and U. Kortshagen, Adv. Materials 19, 2513 (2007)

Low temperature plasma synthesis of silicon nanocrystals: the way for high deposition rate and efficient polymorphous and microcrystalline solar cells

Y. Djeridane, Th. Nguyen-Tran, E.V. Johnson , A. Abramov, Q. Zhang, and <u>P Roca i Cabarrocas</u>

LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

With the spectacular increase in photovoltaic solar energy (~40% annual growth over the last 10 years) and the anticipated increase in the market share of thin films (20% in 2010), new more stringent demands are being placed on thin film deposition technologies, and low temperature plasma processes need to be revisited. Indeed, the standard a-Si:H deposition process based on the production of SiH_x radicals by the dissociation of silane suffers from a low deposition rate. In previous studies we have addressed the synthesis of silicon clusters and nanocrystals which offer a new route for thin film deposition [1]. Here, we focus on plasma diagnostics which provide a clear signature for the presence of nanocrystal formation in the gas phase, as well as the application of this synthesis route to polymorphous and microcrystalline silicon solar cells. We show that superior electronic transport properties are achieved at higher deposition rates, and the device properties reflect this result.

Hydrogenated polymorphous silicon (pm-Si:H) has developed as an alternative to a-Si:H and its application to PIN solar cells has resulted in devices with improved stability [2]. In this presentation we summarize our progress in the understanding of this material, with particular emphasis on its application to PIN solar cells and mini modules deposited at high rates.

It is quite generally accepted that the growth of microcrystalline silicon films involves four phases: incubation, nucleation, growth, and steady state, and that atomic hydrogen is a key element at each stage. As a result, the film structure develops in a columnar fashion with an amorphous interface with the substrate. Moreover, the increase in deposition rate results in a decrease of the crystalline fraction as the competition between growth rate and crystallization rate is in favour of the growth. However, for practical applications one needs μ c-Si films with thicknesses in the range of 1-2 microns and thus a high deposition rate is mandatory. The synthesis of silicon nanocrystals in the plasma allows to circumvent this hurdle. Indeed the growth rate of nanocrystals in the plasma can be extremely large (up to 100 nm/s). Thus, the incubation and nucleation phases, difficult to achieve on the substrate, are easily obtained in the plasma and allow an increased deposition rate. We have applied this concept to the deposition of microcrystalline silicon solar cells and have achieved short circuit currents up to 25 mA/cm² for 1.5 μ m thick solar cells, resulting in efficiencies of 8-9%. Plasma diagnostics during these depositions show low frequency oscillations in the plasma [3].

In summary the increasing demands being placed on solar cell fabrication technology is driving an intensification in the development of low temperature plasma processes able to produce high quality silicon thin films at high rates. Processes employing plasma-synthesized nanocrystals and clusters address this demand in an elegant way, and demonstrate tremendous potential in both deposition rate as well as device quality.

1. P. Roca i Cabarrocas, A. Fontcuberta i Morral, S. Lebib, and Y. Poissant, Pure Appl. Chem. **74**, 359 (2002).

2 P. Roca i Cabarrocas, Th Nguyen-Tran, Y. Djeridane, A. Abramov, E. Johnson and G. Patriarche. J. Phys. D: Appl. Phys. 40 (2007) pp. 2258-2266

3 E. V. Johnson, Y. Djeridane, A. Abramov and P. Roca i Cabarrocas, Plasma Sources Sci. Technol., *under submission*.

LABORATORY INVESTIGIONS OF AURORAL CYCLOTRON EMISSION PROCESSES

<u>K. Ronald¹</u>, D.C. Speirs¹, S.L. M^cConville¹, K.M. Gillespie¹, A.D.R. Phelps¹, A.W. Cross¹, R. Bingham^{1,3}, C.W. Robertson¹, C.G. Whyte¹, I. Vorgul², R.A. Cairns², B.J. Kellett³ and W. He¹

¹SUPA Department of Physics, University of Strathclyde, Glasgow, G4 0NG, Scotland ²School of Mathematics and Statistics, University of St. Andrews, St Andrews, KY16 9SS, Scotland

³ Space Physics Division, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, England

Auroral Kilometric Radiation, AKR, occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole where conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emissions and radiation is emitted in the X-mode. In the laboratory a 75-85kV electron beam of 5-40A was magnetically compressed by a system of solenoids. Results are presented for an electron beam gyrating at cyclotron frequencies of 4.42GHz and 11.7GHz resonating with near cut-off TE_{01} and TE_{03} modes respectively. Measurements of the electron transport demonstrated that the horseshoe distribution function was formed and were analysed to yield the 1D number density as a function of pitch angle. The total power emitted experimentally was ~19-35kW [1] with a maximum emission efficiency of ~2%. These results were compared to those obtained numerically using a 2D PiC code KARAT with a maximum efficiency of 2% predicted for the same mode and frequency, comparable with astrophysical and theoretical results. The experiment is currently being modified by introducing a background plasma to give a better representation of the natural environment.

- K. Ronald, D.C. Speirs, S.L. McConville, A.D.R. Phelps, C.W. Robertson, C.G. Whyte,
 W. He, K.M. Gillespie, A.W. Cross and R. Bingham, 2008, Physics of Plasma, in press
- [2] D.C. Speirs, S.L. McConville, K.M. Gillespie, K. Ronald, A.D.R. Phelps, A.W. Cross,
 R. Bingham, C.W. Robertson, C.G. Whyte, I. Vorgul, R.A. Cairns and B.J. Kellett,
 2008, Plasma Physics and Controlled Fusion, in press

Astrophysical Jet Experiments

<u>C. D. Gregory</u>¹, B. Loupias¹, J. Howe², J. Waugh¹, S. Myers², M. M. Notley³, Y. Sakawa⁴, A. Oya⁵, R. Kodama⁵, S. Bouquet⁶, E. Falize^{6,7}, C. Michaut⁷, M. Koenig¹, N. C. Woolsey²

¹ LULI laboratory, Ecole Polytechnique, France
 ² Department of Physics, University of York, England
 ³Central Laser Facility, Rutherford Appleton Laboratory, England
 ⁴Institute of Laser Engineering, Osaka University, Japan
 ⁵Graduate School of Engineering, Osaka University, Japan
 ⁶CEA, Bruyeres Le Chatel, France
 ⁷Observatoire de Paris, University Paris Diderot, France

Some of the most inspiring images in science are of astronomical objects, and the study of the phenomena responsible for such images has long been of interest. Traditionally, such understanding has come from theoretical models and computational simulations. The current capabilities of pulsed power devices, such as high-intensity lasers and z-pinch facilities, can deliver energy densities comparable to those found in astrophysical objects. This allows us to perform laboratory experiments that, if correctly designed and interpreted, can provide valuable insight into some of the outstanding problems in astrophysics.

An area of considerable progress in this field is the laboratory simulation of astrophysical jets, and in particular those associated with the accretion phase of young stellar objects. The relative proximity of these objects, and their ubiquity, has lead to a large amount of high quality observational data. There remain a number of uncertainties about these systems, for example: how are these jets launched? Why are they so well collimated over such long length scales? To what extent do magnetic fields, radiative losses and the ambient medium affect their dynamics?

This talk will give a brief introduction to young stellar object jets, and outline some of the questions that may be adressed in the laboratory. The focus will be on laser-plasma experiments, in which jets have been created through the collision of two expanding plasmas. These experiments have succeeded in driving high-velocity outflows that are in a regime which suggests scaling to astrophysical systems is possible, and have begun to investigate the effects of an ambient gas on the jet propagation.

Experiments on interstellar cloud evolution following strong shock passage*

J. Freddy Hansen[†],

Lawrence Livermore National Laboratory, Livermore CA 94550, USA

The evolution of interstellar clouds following the passage of a supernova shock is an important astrophysical phenomenon; the shock passage may trigger star formation and the post-shock flow surrounding the clouds will strip them of material, effectively limiting cloud life times. Experiments conducted at the Omega laser attempt to (a) quantify the mass-stripping of a single cloud, and (b) simulate the effects of nearby clouds interacting with each other. A strong shock is driven (using 5 kJ of the 30 kJ Omega laser) into a cylinder filled with low-density foam with embedded 120 m Al spheres simulating interstellar clouds. The density ratio between Al and foam is ~9. Material is continuously being stripped from a cloud at a rate which is inconsistent with laminar models for mass-stripping; the cloud is fully stripped by 80ns-100ns, ten times faster than the laminar model. A new model for turbulent mass-stripping is developed [1,2,3] that agrees with the observed rate and which should scale to astrophysical conditions. Two interacting spherical clouds are observed to turn their upstream sections to face each other, a result that is completely opposite of earlier work [4] on two interacting cylinders. The difference between these two cases is explained by the relative strength of shocks reflected from the clouds.

*Prepared by LLNL under Contract DE-AC52-07NA27344. [†]In collaboration with H. F. Robey, R. I. Klein, A. R. Miles, Lawrence Livermore National Laboratory; C. F. McKee, University of California Berkeley.

1. J.F. Hansen et al, "Mass-Stripping Analysis of an Interstellar Cloud by a Supernova Shock," Astrophys. Space Sci., *Astrophys. Space Sci.* **307**, 147-152 (2007).

 J.F. Hansen et al, "Experiment on the Mass-Stripping of an Interstellar Cloud Following Shock Passage," *Astrophys. J.* 662, 379-388 (2007).
 J.F. Hansen et al, "Experiment on the mass-stripping of an interstellar cloud in a high Mach number post-shock flow," *Phys. Plasmas* 14, 056505 (2007).
 C. Tomkins et al, "A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders," *Phys. Fluids.* 15, 986 (2003).

LASER-DRIVEN PROTON ACCELERATION: SOURCE OPTIMIZATION AND PERSPECTIVES FOR APPLICATIONS

M.Borghesi

School of Mathematics and Physics, The Queen's University, Belfast, United Kingdom

Ion acceleration from solid targets irradiated by high-intensity pulses is a burgeoning area of research, and is currently the focus of intense research activity worldwide. Under presently achievable irradiation conditions, the acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (~TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) are, under several respects, markedly different from those of "conventional" accelerator beams. In view of these properties, laser-driven ion beams have the potential to be employed in a number of innovative applications in the scientific, technological and medical areas.

We will review here some of the most recent results of research in this area by our group and collaborators, and we will discuss prospects for further developments and applications.

Important results in some applicative areas have been obtained already with currently available beam characteristics (e.g. broadband spectrum and ~ 50 MeV cut-off energy). In particular the use of these beams as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. We will discuss some of the most recent results obtained with this technique, applied to the diagnosis of transient self-generated electric and magnetic field during high-power laser-plasma interactions.

Other applications (including the possible use of laser-driven protons for cancer radiotherapy) will require optimized performance compared to characteristics currently available, in terms of particle numbers, energy, spectral content or beam divergence. Some recent experimental studies aimed to characterize and optimize the beam properties and to better gauge perspectives in these areas will be reported. Laser facilities currently becoming available or being planned will open up over the next few years previously inaccessible interaction regimes. This, coupled to ongoing developments in targetry and laser beam control, will lead to the possible implementation of novel ion acceleration schemes, highly promising for the delivery of optimised beams for applications.

HALL EFFECT THRUSTERS FOR SATELLITE PROPULSION

J.P. Boeuf

LAPLACE, University of Toulouse, CNRS, France

Hall Effect Thrusters (HETs) are a class of gridless ion sources that can generate thrust from 10's to 100's of mN, with specific impulse in the 2000 s range (i.e. exhaust velocity of the propellant on the order of 20 km/s). They are well suited for tasks such as satellite station keeping and are also considered for interplanetary missions. For these missions, where a relatively small thrust is needed for a very long period of time, their large specific impulse makes them much more efficient than chemical thrusters and allows important cost reduction.

After a general introduction on space propulsion, the lecture will be centred on the principles and the physics of Hall Effects Thrusters. We will focus on basic physics questions related to electron and ion transport in a HET. HETs use an EXB configuration, where an external magnetic field perpendicular to the applied electric field and discharge current increases the residence time of electrons in the thruster and allows ionization of the xenon neutral flow. The gridless ion acceleration is provided by the electric field resulting from the drop of electron conductivity associated with this EXB configuration. Most of the neutral flow is ionized and the neutral gas density in the exhaust region of the thruster is not large enough to allow sufficient electron transport across the magnetic field and to explain experimental measurements.

The physics of electron transport in HETs is still an open question although important progress have been made in the last ten years. We will describe the recent efforts¹ toward the understanding of charged particle transport in HETs, and present a synthesis of the combined results of Particle-In-Cell models, hybrid models, Laser Induced Fluorescence measurements and Collective Scattering experiments. One possible explanation of the observed anomalous electron transport is the generation of an azimuthal drift instability that has been predicted by PIC models. Experimental efforts are aimed at confirming the anomalous turbulent transport predicted by the kinetic models.

References

 [1] TELIOPEH project ("Transport ELectronique et IOnique dans les Propulseurs à Effet Hall"), ANR contract N° ANR-06-BLAN-0171

SPONTANEOUS ROTATION IN ALCATOR C-MOD PLASMAS

J.E. Rice, A.C. Ince-Cushman, Y. Podpaly M.I.T. P.S.F.C., Cambridge, MA, USA

Spontaneous toroidal rotation, self-generated in the absence of external momentum input, exhibits a rich phenomenology. In L-mode plasmas, the rotation varies in a complicated fashion with electron density, magnetic configuration and plasma current, and is predominantly in the counter-current direction. The rotation depends very sensitively on the balance between upper and lower null, and plays a crucial role in the H-mode power threshold [1]. Rotation inversion between the counter- and co-current direction has been observed following small changes in the electron density and plasma current, with very distinct thresholds [2,1]. In stark contrast, the intrinsic rotation in H-mode plasmas has a relatively simple parameter dependence, with the rotation velocity proportional to the plasma stored energy [3], and is always directed co-current. A comparison of spontaneous rotation in Hmode plasmas from many devices leads to a relatively simple scaling, with the observed thermal Mach number proportion to the normalized pressure [4]. This scaling obtains over a wide range of operational parameter space, and for H-modes produced by many different techniques (ICRF heating, Ohmic heating, ECH, ECH with LHH), indicating a universality of the phenomenon. Extrapolation to ITER plasmas suggests RWMs may be suppressed without external momentum input. In plasmas with internal transport barriers, formed either with offaxis ICRF heating or LHCD, the rotation velocity inside of the ITB foot is found to be in the counter-current direction.

- [1] J.E. Rice et al., Nucl. Fusion 45, 251 (2005)
- [2] B.P. Duval et al., Plasma Phys. Control. Fusion 49, B195 (2007)
- [3] J.E. Rice et al., Nucl. Fusion **38**, 75 (1998)
- [4] J.E. Rice et al., Nucl. Fusion 47, 1618 (2007)

I4.059, Thursday 12 June 2008

Innovative Diagnostics for ITER Physics addressed in JET A.Murari* and JET-EFDA Contributors¹ JET_EFDA, Culham Science Center, OX14 3DB, Abingdon, UK *Consorzio RFX-Associazione EURATOM ENEA per la Fusione. I-35127 Padua, Italy

The JET scientific mid-term programme, whose main pillars are the installation of a completely new first wall (made of Beryllium and Tungsten) and a significant increase in the additional heating power, is aimed at controlling plasmas of performance closer to the next step device, ITER. Extending the operational space towards more reactor relevant parameters requires further understanding of various physical phenomena including a) the dynamics of low temperature plasmas close to the containment wall b) the effects of turbulence, at the macroscopic and meso-scale level, on the transport of energy, particles and momentum in the plasma internal region c) the burning plasma aspects linked to the interplay between collective instabilities and energetic particles generated by the fusion reactions. Obtaining the necessary experimental information on these issues poses significant challenges for the measurement systems. Therefore, during the last couple of years, about thirty new or improved diagnostics were installed and a similar number will be finalised during next campaigns, providing JET with state of the art instruments, covering all the main measuring techniques used in physics, from interferometry to scattering, from spectroscopy to tomography, from radar to thermography.

The boundary region of fusion plasmas is particularly difficult to study because of the often nonlinear mutual influences between plasma physics effects, atomic processes and material properties. With regard to <u>the interactions of the plasma with the surrounding material surfaces</u>, significant improvements in JET infrared systems and magnetic diagnostics have allowed, for the first time, a careful evaluation of the power losses caused by the most harmful global instabilities, which can even cause the premature termination of the discharge and structural damage to the machine. Innovative detectors and techniques, from Quartz microbalances to visible and infrared spectroscopy, have provided new information on processes typical of low temperature plasmas, like erosion, re-deposition and material migration. They have also contributed to elucidate the main physical and chemical aspects of these phenomena.

Plasma properties at <u>the edge</u> have to be determined with high accuracy and resolution mainly in order to control the performance and the transient thermal loads on the wall. The gradients of the electron fluid have been resolved for the first time with spatial resolution of about 1.5 cm using the new High Resolution Thomson Scattering; the ion temperature can be measured with a spatial resolution of a few centimetres from upgraded active spectroscopy. The effects of the changes in the magnetic topology (toroidal field ripple, ergodization etc) on the plasma transport have been quantified. A high time resolution bolometric tomography has been systematically used to characterise the total radiation pattern during fast instabilities and the radiation peaking factor during disruptions. Advanced modelling, integrating atomic physics and impurity transport, is essential for stabilising low temperature plasmas at the limit of detachment, a particular plasma state close to the target tiles where the pressure is not longer constant along the magnetic field lines. A new fast visible camera has confirmed the presence in JET edge plasmas of various structures like filaments and blobs. This diagnostic is expected not only to shed light on the macroscopic instabilities at the edge but also to provide information about meso-scale phenomena and turbulence.

In the plasma core, the <u>energy</u>, <u>particle and momentum confinement</u> is crucially determined by the non-linear saturation level of the turbulence and its effects on transport. In order to understand the impact of these phenomena on the global machine performance, the main plasma parameters have been measured with higher spatial and time resolution using upgraded active spectroscopy, Thomson scattering and microwave diagnostics. Recently particular attention has been devoted to the transport of momentum, the accumulation of light impurities and their dependence from the current profile and the strength of the transport barriers. Advances in the atomic physics of high Z species, mainly tungsten, have been promoted to determine their behaviour in all the various regions of JET plasmas (from edge to core). Neutron diagnostics, with their spectrometric and imaging capability, are essential for burning plasma studies and to accommodate the future changes to the environment (mainly Be tiles).

A multi year upgrade programme has been devoted to the detection of <u>energetic particles</u>. For the first time energetic ions can be measured at JET during their whole life time. In particular their interplay with collective Magneto-Hydro-Dynamic instabilities, which can significantly increase their losses, has been investigated with a new scintillator probe and a set of Faraday cups. To understand their thermalisation process, several advances in detection techniques and atomic physics, of relevance also for various atmospheric physics studies, have proved to be necessary.

In addition to a discussion of the various measuring techniques prospects for ITER, the relevance of the implemented diagnostic upgrades for other scientific communities, from low temperature plasmas to astrophysics and inertial fusion, will also be addressed.

¹ See appendix of M Watkins et al., Fusion Energy 2006 (Proc. 21st Int. Conf. Chengdu, 2006) IAEA Vienna (2006)

Fast-Ignition Target Design and Experimental Concept Validation on OMEGA

C. Stoeckl,¹ K. S. Anderson,¹ R. Betti,^{1,2} J. A. Delettrez,¹ J. A. Frenje,³ V. N. Goncharov,¹

V. Yu. Glebov,¹ A. J. Mackinnon,⁴ R. L. McCrory,¹ D. D. Meyerhofer,^{1,2} J. Myatt,¹ P. A.

Norreys,⁵ P. M. Nilson,¹ R. D. Petrasso,³ T. C. Sangster,¹ A. A. Solodov,¹ R. B. Stephens,⁶ M. Storm,¹ W. Theobald,¹ B. Yaakobi,¹ and C. D. Zhou¹

¹Laboratory for Laser Energetics, University of Rochester, NY, USA

²Depts. of Mechanical Engineering and Physics, University of Rochester, Rochester, NY, USA

³Massachusetts Institute of Technology, Cambridge, MA, USA

⁴Lawrence Livermore National Laboratory, Livermore, CA, USA ⁵Rutherford Appleton Laboratory, Didcot, UK ⁶General Atomics, San Diego, CA, USA

The OMEGA EP Laser Facility [1] will be completed in Spring 2008, adjacent to the 60-beam, 30-kJ, OMEGA Laser Facility [2] at the University of Rochester's Laboratory for Laser Energetics. OMEGA EP consists of four beamlines with a NIF-like architecture [3]. Each of the beams will ultimately produce 6.5 kJ in 10-ns pulses directed into the OMEGA EP target chamber. Two of the beamlines can operate as high-energy petawatt (HEPW) lasers, with up to 2.6 kJ each at a 10-ps pulse duration. The HEPW beams can be injected into either the OMEGA EP chamber or combined collinearly into the existing OMEGA target chamber for integrated fast-ignitor experiments. A comprehensive scientific program is being pursued to explore the physics of fast ignition for both channeling and cone-in-shell approaches. Multidimensional hydrodynamic simulations integrated experiments using OMEGA/OMEGA EP. Fuel-assembly experiments on OMEGA explore the options to achieve high-fuel-areal densities and the effects of a cone on the fuel assembly. Experiments on short-pulse laser systems investigate the conversion efficiency from laser energy to fast electrons, the transport of the electrons, and the energy deposition in plasma.

This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

References

[1] C. Stoeckl et al., Fusion Sci. Technol. 49, 367 (2006).

- [2] T. R. Boehly et al., Opt. Commun. 133, 495 (1997).
- [3] G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004).

Overview of PETAL, the multi-Petawatt project on the LIL facility

N. Blanchot¹, G. Behar¹, T. Berthier¹, E. Bignon¹, F. Boubault¹, C. Chappuis¹, H. Coïc¹,

C. Damiens-Dupont¹⁾, G. Deschaseaux¹⁾, Y. Gautheron¹⁾, P. Gibert¹⁾, O. Hartmann¹⁾,

E. Hugonnot¹, F. Laborde¹), D. Lebeaux¹), J. Luce¹), S. Montant²), S. Noailles¹), J. Néauport¹),

A. Roques¹⁾, C. Rullière¹⁾, F. Sautarel¹⁾, M. Sautet¹⁾, C. Sauteret¹⁾ et C. Rouyer¹⁾

1) Commissariat à l'Énergie Atomique, Centre d'Études Scientifiques et Techniques d'Aquitaine, BP 2, 33114 Le Barp Cedex, France

2) Centre Lasers Intenses et Applications, Unité mixte de Recherche 5107,

Université de Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France E-mail : nathalie.blanchot@cea.fr, claude.rouyer@cea.fr

PETAL (PETawatt Aquitaine Laser), this projected up-graded LIL ⁽¹⁾ (LMJ prototype), will offer a unique combination of one of the highest intensity beams, synchronized nanosecond LIL beams. The primary system requirement is the addition of one short-pulse (500 fs to 10 ps) ultra-high-power, high-energy beam (3.5 kJ compressed energy) to the LIL facility motivated by specific needs, such as:

• as a first step for the HiPER⁽²⁾ project, to carry out fast ignition related experiments, providing fundamental information on fusion plasma physics and demonstration of the required laser and optics technology.

• to widen the field of research in High Energy Density Physics, particle production and acceleration and nuclear physics that can be done on this facility, among other possibilities providing a short pulse, high-energy backlighting capability that also allows the development of backlighting techniques.

We will present the conceptual design of PETAL, the experimental realization of the frontend with OPCPA ⁽³⁾, the compression ⁽⁴⁾ stage and the longitudinal chromatism corrector ⁽⁵⁾.

This work is being performed under the auspices of the *Conseil Régional d'Aquitaine* and the technical supports of the *Institut Lasers et Plasmas*.

(1) J.M. Di-Nicola et al., "LIL Facility Quadruplet Commissioning", IFSA (2005).

- (2) M. Dunne, "A European path to Fast Ignition Fusion Energy", ICUIL (2006).
- (3) E. Hugonnot et al., "OPCPA for the PETAL front-end: design and results", ASSP (2007).
- (4) N. Blanchot et al., "Synthetic aperture compression scheme for Multi-Petawatt High Energy laser", Appl. Opt. 45, (2006).
- (5) J. Néauport et al., "Chromatism compensation of the PETAL multi-Petawatt high energy laser," Appl. Opt. 46, (2007).

Present Status of Pinch Plasmas for EUV and Soft X-ray Radiation

K. Bergmann

Fraunhofer Institute for Laser Technology, Steinbachstr. 15, D-52074 Aachen Germany

Discharge plasmas are well known as intense emitter oft soft x-ray and extreme ultraviolet radiation with wavelengths ranging from 1 nm to 50 nm (XUV). The basic mechanism of generating the characteristic short wavelength radiation by heating and compressing a plasma to temperatures of several tens to several hundreds of electron volts and densities of 10^{18} - 10^{19} cm⁻³ has been intensively investigated for several decades. However, mainly driven by the activities in extreme ultraviolet lithography aiming at a compact and powerful source at a wavelength of 13.5 nm these sources have experienced a remarkable progress over the last ten years with respect to technological aspects. These are operating at several tens of kilowatts electrical input power with related challenges in cooling of the electrode system, repetition rates up to 10 kilohertz and more, debris and lifetime. These technological problems have in turn triggered basic studies in different areas, since the systems have to be pushed to their respective theoretical limits, which also have to be explored. The current status of source development for EUV lithography at different places will be presented with focus on the Philips's vacuum arc as the most advanced technology. Strategies and state of the art of the system lifetime, radiation and input power levels as well as integration into the optical system will be addressed. Taking into account that small source for power levels much lower than required for EUV lithography are already commercially available this technology envisions a new generation of small and cost effective XUV sources. So they might be the appropriate light source for many applications of analysis and patterning on the nanometer scale required in future disciplines of semiconductor industry, life- and material sciences. Scaling of the EUV source technology to ever smaller wavelengths will be presented using the example of a radiation source in the water window spectral range at 2.88 nm to be used in x-ray microscopy.

I4.063, Thursday 12 June 2008

IN-SITU DUST DETECTION IN FUSION DEVICES

S. Ratynskaia¹, C. Castaldo², E. Giovannozzi², D. Rudakov³ ¹Royal Institute of Technology, Stockholm, Sweden ²Euratom ENEA Association, Frascati, Italy ³University of California, San Diego, USA

It is expected that during the discharge most of the dust particles concentrate in the scrape-off layer (SOL) close to the chamber wall. Currently established diagnostics for monitoring the dust during the discharge are visible imaging and laser light scattering. The first can yield velocity of the dust particles provided particles are bigger than a few μ m and their velocities are below 1 km/s. The scattering gives an insight on the amount of submicron dust though the interpretation of the scattered signals might be complicated as it depends on the optical properties of the dust grains and can require modelling of the laser-dust nonlinear interaction.

The dust-impact ionization phenomenon can be used for detection of particles with velocities above few km/s. Impact events can be registered by electrostatic probes, by analysis of the surfaces where the events took place and by light emission associated with the impact ionization. Particularly valuable for such diagnostic could be targets of aerogel – light porous material which allows capturing of fast particles without destroying them, hence providing information on their velocity distribution, size and composition. Preliminary outgasing tests demonstrated that pure silica aerogels are compatible with tokamak plasma conditions in SOL.

Other diagnostics include the microbalance technique which permits measurements of the cumulative weight of the collected dust and electrostatic dust detectors counting impinging dust particles.

Recently the possible use of changes in the collective scattering cross-section due to the presence of dust (provided that the dust number density is sufficiently high) was proposed for diagnostic purposes.

14.064, Thursday 12 June 2008

The Dynamic Similarity Between Polygonal Satellite Vortices and Electron Columns in a Malberg-Penning Trap

G. H. Vatistas^{*}, H. Ait Abderrahmane, and M. H. Kamran Siddiqui Department of Mechanical and Industrial Engineering University of Concordia Montreal 1455 de Maisonneuve Blvd. West, Montreal, Quebec, H3G 1M8, CANADA

When employed judiciously, classical analogy is a sensible method of scientific inquiry. Two systems, that may not necessarily resemble physically each other, are considered to be analogous, if both are described by the same set of evolutionary equations. For instance, the stability of point vortices arranged in a ring has its foundation in the similarity among point vortices and the gravitating N-body problem, whereby the vortex strength is replaced by the mass. Furthermore, the Two-Dimensional (2-D) Drift-Poisson equations describing strongly magnetized electron columns and those of 2-D Eulerian fluid motion are dual. In this paper we revisit the dynamics of polygonal vortex core formations, generated under shallow water conditions inside a cylinder by a revolving disk. The observed fluid vortex patterning is isomorphic to pure electron plasma diocotron waves generated in Malmberg-Penning Traps. The present work adds on the description of the event via targeted experiments using the image processing technique. We show the interfacial axial symmetry not to break spontaneously but through spectral development, and the functional relationship amongst the polygon rotation and the disk speed to be surprisingly simple. The route to turbulence first begins by spectral development distinguished by an increase of the number of satellite vortices (up to six) orbiting the parent vortex. Due to resonance inside the bulk flow, the last stage is succeeded by an amplification of dynamical noise that destroys the sharp spectral peaks and eventually gives rise to fully blown turbulence. Power spectrum analysis reveals that harmonic waves modulate the fundamental patterns. At the end of the state, a solitary wave revolving at approximately the frequency of the next equilibrium appears. This system can also be viewed as vortices rotating with a solitary vortex (solitron) encircling the pattern. As the solitron gyrates, about the N pattern, makes each consecutive ridge to appear momentarily fatter. As the N+1 state is reached the wave locks-in at a frequency of 1/3 thus producing the extra apex required to form the next equilibrium pattern. A large distortion of the pattern precedes the birth of the new one.

vatistas@encs.concordia.ca

Studies of blob formation, propagation and transport mechanisms in basic experimental plasmas (TORPEX and CSDX)

<u>S. H. Müller</u>^{2,1}, A. Diallo¹, A. Fasoli¹, I. Furno¹, B. Labit¹, M. Podestà^{3,1}, C. Theiler¹ G. R. Tynan², M. Xu², Z. Yan², J. H. Yu²

¹Centre de Recherches en Physique des Plasmas, Association EURATOM – Confédération Suisse, CRPP EPFL, Lausanne, Switzerland

²Center for Energy Research, University of California, San Diego, CA-92093, USA ³Department of Physics and Astronomy, University of California, Irvine, CA-92697, USA

Plasma blobs are ubiquitous in the tokamak edge and responsible for the majority of transport across the Scrape-Off Layer (SOL). Their generation and propagation mechanisms have been widely studied theoretically, but limited experimental information is available to validate these models. Here, results from basic experiments are presented, in which plasma blobs are studied with much better access and control than possible in tokamaks, using both conditional-averaging and new pattern-recognition analysis techniques.

On the basic toroidal device TORPEX, the blob formation mechanism is found to be related to the breaking of an interchange-driven wave. Blobs form when wave crests extend into regions where they completely dominate the background plasma parameters. The self-generated electric shear is found responsible for the detachment of blobs. Theoretical models of blob propagation are tested by investigating the statistical relation between blob speeds and dimensions. Direct measurements of the blob-induced transport reveal that blobs constitute the dominant cross-field particle and heat transport mechanism across the TORPEX SOL region. Their effect on toroidal momentum transport is investigated using correlated Mach probe measurements.

On the linear device CSDX, radial bursts are observed to emerge from a coherent m=1 mode. The conditions under which these bursts form detached blobs are investigated using combined fast-camera and probe measurements. In the absence of an interchange driving force, blobs lose their initial radial momentum quickly and stagnate in the SOL region. During bursts, the azimuthal rotation of the plasma column is slowed down significantly, indicating the conservation of angular momentum when the plasma's moment of inertia increases.

The magnetopause is really a transport barrier like in tokamaks

<u>R. Trines</u>¹, R. Bingham¹, M.W. Dunlop¹, A. Vaivads², J.A. Davies¹, L.O. Silva³, J.T. Mendonça³, P.K. Shukla⁴

¹ STFC Rutherford Appleton Laboratory, HSIC, Didcot, United Kingdom

² Swedish Institute for Space Physics, Uppsala, Sweden
 ³ Instituto Superior Técnico, Lisbon, Portugal
 ⁴ Ruhr-Universität Bochum, Bochum, Germany
 E-mail: R.M.G.Trines@rl.ac.uk

Internal transport barriers (ITB) are indispensable for reaching high-confinement modes in

tokamaks. An ITB is set up by introducing a shear in the magnetic field or the $\mathbf{E} \times \mathbf{B}$ rotation velocity. This shear stabilises plasma turbulence and prevents particles and energy from escaping the plasma core, thus improving confinement. The most characteristic feature of an ITB is the appearance of strong gradients near the plasma edge. In this lecture, we will show that the magnetopause, the boundary between the shocked solar wind and the Earth's magnetospheric plasma, is a transport barrier in its own right. Strong density gradients, magnetic field and velocity shear, as well as stabilisation of turbulence, can all be observed at the magnetopause.

Recently, we investigated the interaction between broadband drift mode turbulence and zonal flows near the edge of a region of magnetised plasma [1, 2]. Our simulation results showed the development of a zonal flow through the modulational instability of the drift wave distribution, as well as the existence of solitary zonal flow structures about an ion gyro-radius wide, drifting towards steeper relative density gradients. Both the growth rate of the turbulence and the particle/energy transport across the plasma boundary can be stabilised by adjusting the plasma density gradient. This spontaneous formation of of solitary wave structures has also been found in Cluster satellite observations [3], confirming our earlier theoretical predictions. We will discuss the consequences of our results for our understanding of the Earth's magnetopause, as well as for the study of Edge Localised Modes in tokamaks.

This work was supported by the STFC Centre for Fundamental Physics and the STFC Accelerator Science and Technology Centre (ASTEC).

References

[1] R. Trines et al., Phys. Rev. Lett. 94, 165002 (2005).

- [2] R. Trines et al., Physica Scripta T116, 75 (2005).
- [3] R. Trines et al., Phys. Rev. Lett. 99, 205006 (2007).

Expansion of nanoplasmas in ultraintense laser-matter interactions

F. Peano

GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisboa, Portugal

The expansion dynamics of nanometer-sized plasmas is a relevant physical problem for applications such as the laser-induced production of nuclear particles in jets of clusters or nanodroplets [1,2], or the imaging of biological samples with ultraintense x-ray pulses [3]. These scenarios involve the prompt formation and expansion of dense nanoplasmas [1], with cold ions and hot electrons. Depending on the physical conditions, the electrons are heated by the laser, driving the hydrodynamic-like expansion of electron-ion plasmas, or swept off the single clusters, causing the Coulomb Explosion (CE) of pure ion plasmas.

The transition from the hydrodynamic-like regime to the CE regime is investigated with a novel ergodic model, which provides a self-consistent, kinetic description of the collisionless expansion of spherical plasmas driven by hot electrons: simple relationships are deduced for the key expansion features, valid for a wide range of initial conditions [4], and a threshold electron energy marking the transition to CE-like ion energy spectra is identified.

A technique to control the expansion regime by acting on the amount of energy delivered to the electrons is described, wherein suitable sequences of intense radiation pulses are used to tailor the phase-space dynamics of the ions [5], inducing the formation of large-scale shock-shell structures [6], capable of driving intracluster nuclear reactions. A new solution to the pure CE problem is also illustrated, which involves the simultaneous overtaking of all the ions initially contained in a given 3D volume (dimensional collapse), and the corresponding formation of a density singularity containing a finite amount of charge [7].

Work partially supported by FCT, and performed in collaboration with: J. L. Martins, R. A. Fonseca, and L. O. Silva (IST); F. Peinetti, R. Mulas, and G. Coppa (PoliTo).

- [1] T. Ditmire et al., Nature 386, 54 (1997); T. Ditmire et al., Nature 398, 489 (1999).
- [2] I. Last and J. Jortner, Phys. Rev. Lett. 97, 173401 (2006)
- [3] R. Neutze et al., Nature 406, 752 (2000); H. Wabnitz et al., Nature 420, 482 (2002).
- [4] F. Peano et al., Phys. Rev. Lett. 96, 175002 (2006); Phys. Rev. E 75, 066403 (2007)
- [5] F. Peano et al., Phys. Rev. Lett. 94, 033401 (2005); Phys. Rev. A, 73, 053202 (2006).
- [6] A. E. Kaplan et al., Phys. Rev. Lett. 91, 143401 (2003)
- [7] F. Peano et al., in preparation.

Fast ignition: original concept and new developments*

<u>Max Tabak</u>

Lawrence Livermore National Laboratory, Livermore, CA, USA

Over the last decade many scientists around the world have studied Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a long pulse driver and then ignited by the short pulse laser. Due to technological advances, external energy sources (such as short pulse lasers) can produce focused power density equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describing how these are modified as more detailed physics understanding is included. The critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered to the ignition region? Schemes to shorten the distance between the critical surface and the ignition region will be discussed. The status of the project is compared with our requirements for success. Recent approaches to point designs that integrate all of the relevant physics will also be discussed.

*This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Lightning-related transient luminous events at high altitude in the Earth's atmosphere

Victor P. Pasko

Department of Electrical Engineering, Communications and Space Sciences Laboratory Penn State University, University Park, Pennsylvania 16802, USA

Transient luminous events (Fig. 1) are large-scale electrical discharges occurring at high altitude in the Earth's atmosphere, which are directly related to the electrical activity in underlying thunderstorms. Several different types of transient luminous events have been documented and classified. These include relatively slow-moving fountains of blue light, known as 'blue jets', that emanate from the top of thunderclouds up to an altitude of 40 km; 'sprites' that develop at the base of the ionosphere and move rapidly downwards at speeds up to 10,000 km/s; 'elves', which are lightning induced flashes that can spread over

Figure 1: Lightning related transient luminous events. Reprinted from [1] by permission from Nature.

300 km laterally, and upward moving 'gigantic jets', which establish a direct path of electrical contact between thundercloud tops and the lower ionosphere. The goal of this talk is to provide an overview of the history of discovery of different types of transient luminous events, and some of the recent modeling efforts directed on interpretation of observed features of these events. We will discuss a physical mechanism proposed for explanation of sprites, which is build on original ideas advanced many decades ago by the Nobel Prize winner C. T. R. Wilson. We will also discuss similarity properties of electrical discharges as a function of gas pressure in the context of a selected set of results from the recent laboratory and modeling studies of streamers, which are directly applicable for understanding of recent high spatial and temporal resolution imagery of sprites revealing many internal filamentary features with transverse spatial scales ranging from tens to a few hundreds of meters.

References

[1] V. P. Pasko, Nature 423, 927 (2003)

The response of tokamak plasmas to 3D magnetic field perturbations*

J.E. Menard¹, J.-K. Park¹, A.H. Boozer², T. Evans³, D.A. Gates¹, S.P. Gerhardt¹,

S.A. Sabbagh², M.J. Schaffer³, and the NSTX Research Team

¹Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA ²Columbia University, New York, New York, USA ³General Atomics, P.O. Box 85608, San Diego, California 92186, USA

The loss of axisymmetry in tokamak plasma has wide-ranging implications for plasma performance in both present experiments and ITER burning plasmas. An important new tool for understanding 3D magnetic field effects in tokamaks is the Ideal Perturbed Equilibrium Code (IPEC) [1], which can treat ideal plasma response effects including poloidal mode coupling, plasma amplification, and flux-surface displacement. IPEC has been used for optimizing Resonant Magnetic Perturbation (RMP) coil designs for ELM suppression in ITER, and all the above plasma response effects are found to be important. IPEC RMP optimizations minimize resonant perturbations in the plasma core which could excite locked modes, and also minimize plasma flow-damping in the core and edge. IPEC results indicate that coils above, below, and possibly at, the midplane are required to achieve simultaneous minimization of core island excitation and flow damping. Another key question is how much rotation is required to shield low-n (in particular n=1) error fields (EF) that would otherwise excite magnetic islands potentially leading to disruption. IPEC calculations show that poloidal mode coupling effects are needed to explain EF correction results on DIII-D and NSTX [2], and recent NSTX results indicate that local magnetic shear at the q=2 surface is an important parameter determining the n=1 locked mode threshold scaling. The inclusion of plasma response effects can significantly reduce the predicted locking threshold for ITER, but the predicted threshold is estimated to be a factor of two above ITER's minimum correction capability. RMP coils in ITER might also provide additional EF correction capability. Finally, beyond IPEC results, NSTX has discovered that n > 1 EFs can be just as important as n=1EFs at high β_{N} . Correction of n > 1 intrinsic EFs is not commonly considered in existing tokamaks or ITER, and without such correction in NSTX, some discharges are prone to rotation decay and n=1 Resistive Wall Mode (RWM) growth and plasma disruption. For these discharges, surfaces with q > 2 are apparently most important for providing RWM stabilization, a result that is providing new insight into the stabilization physics of the RWM.

[1] J.-K. Park, A.H. Boozer, and A.H. Glasser, Phys. Plasmas 14, 052110 (2007)

[2] J.K. Park, M.J. Schaffer, J.E. Menard, and A.H. Boozer, Phys. Rev. Lett. 99, 195003 (2007)

*This research was supported by U.S. DOE contract DE-AC02-76-CH03073.

Plasma performance and confinement in the TJ-II stellarator with lithium-coated walls

F.L. Tabarés and the TJ-II Team.

Laboratorio Nacional de Fusión. CIEMAT. Avenida Complutense 22, 28040 Madrid, Spain

e-mail: tabares@ciemat.es

As it is well known, proper selection of the plasma facing components is one important tool for the control of plasma parameters and confinement. The effect is typically ascribed to the associated changes in recycling, radiated power and impurity penetration, all of them having direct impact in the plasma parameters critically governing particle and energy confinement. In the last experimental campaign, the TJ-II stellarator, which has been operated under boronized first wall condition until now, has been coated with lithium by vacuum evaporation. This has led to important changes in plasma performance. Particularly conspicuous has been the change in recycling associated to the new wall conditions, but also impurity content, with direct impact on radiative losses and total energy confinement is modified by the type of coating, as expected in a first-wall dominated plasma-wall interaction device. Changes in the shot by shot fuelling characteristics as well as in the total particle inventory compatible with good density control and plasma reproducibility under ECRH scenarios have been recorded after the Li deposition. Thus, a rise by a factor of 4 in the fuelling rate at constant density compared with the B-coated walls was recorded, and even a higher factor was estimated for the allowed H inventory at the walls. These changes were also mirrored in the radiation and edge radial profiles, with increased electron temperatures. The replacement of dominant impurity at the edge also led to the extension of the effective density limit in NBI heating scenarios. This limit, formerly ascribed to the development of a radiation instability at the edge, seems to be due to a global energy balance mismatch under the new wall conditions, opening the way to heating upgrading for high beta operation in TJ-II. Transport analysis with Proctr code to fit the different impurity profiles and the changes in the effective electron heat diffusivity is ongoing. The radiation radial profiles, which are basic for understanding the local power balance, are obtained considering four impurity species (Li, C, B, O) and using the local corona equilibrium. At densities above 3.10^{13} cm⁻³, higher plasma energy contents were measured under Li-coated wall conditions as compared with boronized conditions under the same heating scheme, and the effect of such scheme (ON-OFF axis ECRH launching, OH induction, etc) on absolute Wdia values has also been addressed.

Of special relevance in the confinement properties of TJ-II plasmas is the spontaneous development of radial electric fields at the edge at a critical density, concomitant to the transition to the enhanced global particle confinement (EPC) mode. The apparent lack of such a transition under Li walls, easing the way to density control by external puffing, has been analyzed trough the associated development of a velocity shear layer at the edge, as measured by Langmuir probes, and changes in plasma potential by the HIBP diagnostic, and results in this line will be also presented.

Global Plasma Oscillations in ITBs

V.S. Udintsev, E. Asp, T.P. Goodman, O. Sauter, G. Turri and TCV Team

Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland

In the Tokamak à Configuration Variable (TCV; R/a = 0.88 m/0.25 m, BT < 1.54 T), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring Electron Internal Transport Barriers (eITBs) with strong Electron Cyclotron Resonance Heating and Current Drive (ECRH/ECCD). They are linked to the destabilisation and stabilisation of MHD modes near the foot of the internal transport barrier and can lead to large oscillations of the total plasma current and line-averaged density for example. These regimes are similar to the so-called O-regime first observed on Tore Supra [1], but are actually of much more general nature. Indeed they are intrinsically linked to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore the ideal MHD limit is relatively low and infernal modes can be unstable. When these ideal infernal modes are destabilised, minor or major disruptions can be observed. However depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. They reduce the improved confinement, which lowers the pressure and thereby decreases the bootstrap current density. Since bootstrap fraction is large, the total plasma current is also affected. Being near marginal stability, the modes can selfstabilise due to their modification of the pressure gradient and local q profile. The plasma recovers good confinement, reverse shear and the build up of the internal transport barrier, until a new MHD mode is destabilized.

TCV has shown that this cycling behaviour can be controlled by modifying the current or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It has also been shown that either resistive type modes or ideal type crashes can lead to similar oscillations observed on the plasma current time evolution. These are consistent with the fact that near an ideal limit, resistive modes can also be unstable due to the pole in Δ '. Therefore we can see that many observations like q = 2 sawteeth, beta collapse and minor disruption in ITBs, oscillation regimes, periodic relaxation regimes can be assigned to the same physics origin: the proximity to the infernal mode stability limit [2].

This result is important since it is inherent to any steady-state type scenario. Indeed, the latter needs ITB, large bootstrap fraction and no inductive current contribution [2]. These lead to reverse shear q profiles and therefore large pressure gradient near q_{min} . These scenarios are only weakly controlled by external actuators, since most of the current profile is sustained by the bootstrap current. 'It was also shown that a small perturbation to an existing electron internal transport barrier by power modulation triggered an oscillation regime, which continued after the power modulation was stopped. As steady-state burning plasmas might also incur small perturbations, that such occur: likely oscillations will which may it is very be very damaging. This detailed study will show the relation between oscillations and MHD modes and how the scenarios can be controlled and modified with current density tailoring or with a modification of the pressure profile.

[1] G. Giruzzi et al., Phys. Rev. Lett. 91, 135001 (2003).

[2] O. Sauter et al., Phys. Rev. Lett. 94, 105002 (2005)

Access to H-mode on JET and implications for ITER

<u>Y Andrew</u>¹, NC Hawkes¹, YR Martin², K Crombe³, E de la Luna⁴, A Murari⁵, I Nunes⁶, R Sartori⁷ and JET EFDA contributors*

JET-EFDA Culham Science Centre, Abingdon, UK, OX14 3DB

1. Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, UK, OX14 3DB, 2. Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherhes en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne, Switzerland. 3. Department of Applied Physics, Ghent University, Belgium, 4.Asociación EURATOM-CIEMAT, CIEMAT, Madrid, Spain, 5. Consorzio RFX, ENEA-Euratom Association, Padua, Italy, 6. Associacao EURATOM/IST, Centro de Fusao Nuclear, Lisbon, Portugal, 7. EFDA CSU, Boltzmannstrasse 2, 8674 8 Garching, Germany

One of the critical issues for ITER is access to an H-mode regime with good confinement, $H_{98} = 1$. Studies of the transition from L-mode to H-mode (the L-H transition) have been carried out for many years on a wide range of different sized devices such as, JET, JET-60U, DIII-D, ASDEX, Alcator C-MOD, MAST and NSTX. Experiments across the world have contributed data on H-mode access to an international threshold database (13 tokamaks) managed by the International Tokamak Physics Activity (ITPA) Confinement Database and Modeling (CDM) Topical Group, from which several scalings for the power threshold for the L-H transition, P_{th}, have been derived. The most basic scaling laws for P_{th} take in account the variation with plasma density, magnetic field and plasma size. However, the large variation in P_{th} data from the values estimated with such simple scaling laws indicate other underlying dependencies. Another important consideration is that P_{th} corresponds to the power required to enter the H-mode, but not necessarily the power needed to obtain an H-mode with good confinement. H-modes with higher values of energy confinement are often only achieved with input power values much greater than P_{th}.

This paper will present results from recent studies on JET to assess possible hidden variables for H-mode access over a wide range of plasma conditions. These experiments have also benefited from recent improvements to the spatial and temporal edge plasma diagnostics on JET, providing a unique opportunity to improve our understanding of the physics of H-mode transitions. A key result from this work is the significant variation in the plasma density dependence of Pth with divertor Xpoint and strike-point configuration, ranging from $n_e^{1.26}$ to $n_e^{0.12}$. Sensitivity to the divertor geometry could account for some of the scatter in the international threshold Pth database. Hysteresis in the L-H transition P_{th} has also been studied on JET by comparing values of P_{th} at the forward and back Hmode transitions over a range of densities. No evidence of hysteresis in the H-mode power threshold is observed for the two different magnetic configurations considered. The impact of edge plasma rotation on H-mode access has also been studied on JET with a Toroidal Field ripple scan of the L-H transition and ELM phase access. Despite a large change in edge toroidal rotation velocity no significant variation in Pth was measured, however the subsequent access to high confinement Hmode is clearly altered. Finally, results from experimental studies of the total input power, Pin, requirements relative to measured values of Pth will also be shown for a highly shaped magnetic configuration. The data show that Pin=1.5Pth is necessary on JET for the Type-III to Type-I ELM transition. The implications of all these results for the attainment of H-mode with good confinement on ITER will be discussed in terms of present-day scaling laws and ongoing studies.

*See appendix of ML Watkins et al., 2006 Proc. 21st IAEA Fusion Energy Conference (Chengdu, China 2006).

This work was partly supported by the UK Engineering and Physical Sciences Research Council and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was partly conducted under the European Fusion Development Agreement.

MAGNETIZED PLASMA ERUPTIONS IN THE SOLAR ATMOSPHERE

F Moreno-Insertis,

Instituto de Astrofisica de Canarias, Tenerife, Spain.

Abstract:

Magnetized plasma is emerging continually from the solar interior into its atmosphere. Magnetic flux emergence events and their consequences at different levels in the solar atmosphere are being observed with high space, time and spectral resolution by a large number of space missions in operation at present (e.g. SOHO, Hinode, Stereo, Rhessi), sent by different international space agencies (ESA, NASA, ISAS). The collision of an emerging and a preexisting magnetic flux system in the solar atmosphere leads to the formation of current sheets and to field line reconnection. Reconnection under solar coronal conditions is an energetic event; the reconnecting outflows lead to launching of high-speed (hundreds of 1000 km/s), high-temperature (order 10 million K) plasma jets, which are conspicuous features in the observations with the X-Ray and EUV detectors currently in orbit. Further, the spectacular increase in computational power in recent years thanks to the new supercomputer installations permits to carry out three-dimensional numerical experiments of the time evolution of magnetic flux emerging systems that include magnetofluid and radiative transfer aspects in large computational grids.

In this lecture, the state-of-the-art in this field of research will be reviewed. Observations of X-Ray jets in the solar corona by the satellite missions Hinode and Stereo will be presented. The focus of the lecture will be on the theoretical understanding of these processes. An important computational effort is being done by teams in different countries to model and understand the physics of flux emergence events and its related phenomena. Recent advances obtained through the interplay of theory, numerical simulation and direct observation will be presented.

Recent progress in understanding the behavior of dust in fusion devices

S. I. Krasheninnikov

University of California at San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

It is known that micro-particles (dust) exist in fusion devices. Some of them, seen with cameras and for a long time known as "UFOs" (e.g. see Ref. 1), travel through hot fusion plasma on rather large distance and may contribute to the contamination of core plasma with impurities. Amount of such UFOs significantly increases during abnormal events (e.g. large ELM, disruption). Yet, an impact of dust on plasma contamination, material migration, and performance of fusion devices is still under debate (e.g. see Ref. 2-4 and the references therein). Meanwhile, ITER-scale plasma experiments bring another dimension to the dust's story: dust can pose safety problems related to it's chemical activity, toxicity, tritium retention, and radioactive content [5]. In order to address these safety and performance issues we need to understand the physics of dust generation, dynamics, and transport. However, the physics of dust is very complex and multifaceted. Here, the results of recent theoretical and experimental studies of dust in fusion plasmas are reviewed. We consider the latest experimental observations of dust dynamics in fusion plasmas with fast cameras, dust statistics obtained with Thomson scattering systems, the results of analysis of dust collected from the walls of fusion devices, and dust generation mechanisms. We also discuss different aspects of the physics of dust motion in fusion plasmas including dust-plasma, and dustsurface interactions. We consider the physics of dust charging, heating, destruction, spinning, forces acting on dust, dust collision with material walls, etc. The numerical models of these processes have been incorporated into the dust transport code DUSTT, which is capable of tracking of dust particles in 3D geometry (needed plasma parameters can be taken either from edge plasma codes or from experiments). The results of the simulations of dust particle dynamics, transport, and the impact on edge plasma performance will be discussed.

- [1] D. H. J. Goodall, J. Nuclear Materials 111 & 112 (1982) 11
- [2] J. Winter, PPCF 46 (2004) B583; 40 (1998) 1201
- [3] G. Federici, et al., Nuclear Fusion 41 (2001) 1967
- [4] S. I. Krasheninnikov, et al., PoP 11 (2004) 3141; PPCF 47 (2005) A339
- [5] J.-Ph. Girard, et. al., Fusion Engineering and Design, 82 (2007) 506
- [6] A. Yu. Pigarov et al., PoP 12 (2005) 122508; R. D. Smirnov et al., PPCF 49 (2007) 347

Technology and science of steady state operation in magnetically confined plasmas

A. Bécoulet

Association EURATOM-CEA sur la fusion, DSM/IRFM, Cadarache, France.

The steady-state operation of magnetically confined fusion plasmas is considered as one of the "grand challenges" of the future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both the science and technology aspects of magnetic fusion into self-consistent plasma regime(s) in the relevant devices.

On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means either rely on intrinsically steady-state configurations, like stellarator one, or turn the inductively driven tokamak configuration into a fully non inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal "pressure driven" bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle then forms as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other players, e.g. plasma rotation profile, magneto-hydro-dynamics activity, ..., also influence the equilibrium state. In the present tokamak devices, several examples of such "advanced tokamak" physics research demonstrate the feasibility of such steady-state regimes, though with a number of open questions still under investigation. The modelling activity also develops very fast in this domain and supports understanding and extrapolation.

This high-level of physics sophistication of the plasma scenario then needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to achieve the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a fusion device. The first ones include specific additional heating and current drive methods (through externally launched waves or fast particles), fuelling and pumping methods, dedicated plasma diagnostics as well as software and middleware technologies used to create the mandatory real time control loops, involving such actuators and sensors. The second class of technologies, generic to any magnetic fusion device, include the superconducting magnet technologies, in order to provide stationary confinement magnetic field, the actively cooled plasma facing components handling either radiated or convected power fluxes (often in excess of several tens of MW/m^2), dedicated diagnostics monitoring the interfaces (like infrared survey of plasma facing components), ... The detailed specifications of such elements must comply with reactor relevant parameters, in terms of operational parameters as well as life time.

The paper presents an overall picture of the present status and understanding of the technology and science of the steady state operation in magnetically confined plasmas, as well as the forthcoming work programme dedicated to the vast R&D programme undertaken in this domain, in particular within the European fusion framework.

Magnetic Collimation of Fast Electrons using Structured Targets

A.P.L. Robinson¹, M.Sherlock¹, M.Zepf², S.Kar², P.A.Norreys¹

¹ Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, United Kingdom

² Dept. of Physics and Astronomy, Queen's University Belfast, Belfast, United Kingdom

The propagation of beams of multi-MeV fast electrons with current densities of the order of 10^{16} Am⁻² through solid targets irradiated by ultra-intense (> 10^{18} Wcm⁻²) lasers is a subject of great interest to many in the ultra-intense laser-plasma community. The collimation or divergence of the fast electron beam, and how this might be controlled, is particularly important for Fast Ignition Inertial Confinement Fusion, x-ray production from solid targets, heating solid targets, and ion acceleration from the rear surface of the target.

Our recent work has focussed on a target engineering approach to controlling collimation (the "structured collimator") [1]. The basic idea is to use a fibre which surrounded by less resistive material. Since one expects that the electric field required to draw a return current is determined by $\mathbf{E} = -\mathbf{h}\mathbf{j}_{\mathbf{fast}}$, there is a gradient in the electric field at the interface between the two materials. The curl of the electric field is in the correct sense to generate a collimating B-field. Furthermore, simple estimates (using a 'rigid beam' model) indicate that the magnetic field should grow fast enough to be able to bend divergent fast electrons back towards the target axis. When this concept is investigated using 2D hybrid Vlasov-Fokker-Planck codes, it is indeed found that strong collimation occurs.

The theory and simulation studies on this concept will be discussed, and different geometries will be considered and compared to initial experimental studies validating the concept.

References

[1] A.P.L.Robinson and M.Sherlock, Phys.Plasmas, 14, 083105 (2007)

ELECTRON TRANSPORT IN IMPLODED FAST IGNITION TARGETS

J.J. Honrubia¹ and J. Meyer-ter-Vehn²

¹ GIFI, Universidad Politécnica, Madrid, Spain ² Max-Planck-Institut für Quantenoptik, Garching, Germany

Fast ignition involves transport of GA currents of laser-driven electrons through dense coronal plasma of imploded fusion targets [1, 2]. Recently, we have reported integrated simulations of target ignition by fast electrons by means of a hybrid approach that allowed us to investigate important transport features such as current filamentation and magnetic beam collimation simultaneously with ignition physics [3, 4]. In those simulations, we assumed that the electron kinetic energies are given by the ponderomotive scaling and considered an initial divergence half-angle of 22.5°, consistent with the experiments reported in Ref. [1]. We found minimum ignition energies from 25 to 30 kJ, depending on the distance from the cone tip to the compressed core. Assuming a laser-to-fast electron conversion efficiency of 40%, those energies correspond to laser beam energies from 60 to 75 kJ, of the same order than those envisioned for HiPER [5].

Recent experiments carried out at RAL [6] at laser intensities relevant to fast ignition have evidenced an enhancement of the beam divergence with the laser intensity and electron kinetic energies lower than those predicted by the ponderomotive scaling [7]. We have recomputed the ignition energies of fast electron beams taking into account those experimental results. We have taken divergence angles consistent with the experiments of Ref. [6] and mean energies of fast electrons from 1 to 2 MeV. In addition, we have accounted for the scattering of electrons with the cone tip, typically a gold layer of tens of microns, which may induce a beam divergence comparable with those measured in the experiments. In this talk, we will present a parametric study on fast electron energy deposition and actual ignition of an imploded target configuration for different mean kinetic energies and divergences of the relativistic electrons.

References

[1] R. Kodama et al., Nature 412, 798 (2001) and Nature 418, 933 (2002).

- [2] R.B. Stephens et al., Phys. Rev. Lett. 91, 185001 (2003).
- [3] J.J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006).
- [4] J.J. Honrubia and J. Meyer-ter-Vehn, IFSA 2007 Proceedings (2007).
- [5] M. Dunne, *Nature Physics* **2**, 2 (2006).
- [6] J.S. Green et al., Phys. Rev. Lett. 100, 015003 (2008).
- [7] Y. Sentoku et al., IFSA 2007 Proceedings (2007).

New Phenomena in Liquid Complex Plasmas

<u>A. Ivlev¹</u>, V. Steinberg², R. Kompaneets¹, H. Thomas¹, G. Morfill¹

¹ Max-Planck-Institut f
ür extraterrestrische Physik, Garching, Germany
 ² Weizmann Institute of Science, Rehovot, Israel

Rheology of strongly coupled complex (dusty) plasmas is remarkably diversified and often reveal essential features peculiar to regular complex fluids. We will present a few highlights from recent dedicated experiments where rheology of complex plasmas was investigated under different conditions.

In ground-based experiments with the PK 4 dc discharge setup the flow curves (shear stress vs. shear rate) were measured [1]. Shear flow of microparticles was induced either by inhomogeneous flow of neutral gas, or by using the laser forces. Combination of the two methods allowed us to investigate the entire range of shear rates up to the limit where discreteness enters and complex plasmas cannot be formally considered as a continuous medium. Analysis of experiments suggests that liquid complex plasmas exhibit strong non-Newtonian behavior, which can be accompanied by significant shear thinning (more than an order of magnitude).

Another series of experiments was performed with PK 3 Plus rf discharge setup under microgravity conditions onboard ISS, where "electrorheological plasmas" were discovered [2]. In contrast to conventional electrorheological fluids where the dipoles (induced by external electric fields) are due to polarization of microparticles themselves, in complex plasmas the primary role is played by clouds of compensating plasma charges (mostly, excessive ions) surrounding negatively charged grains. This discovery adds a new dimension to the research of strongly coupled particle systems – in terms of time/space scales and for studying new phenomena.

Also, we briefly discuss a novel and quite general type of the shear flow instability [3] that can occur in complex fluids with density-dependent viscosity. We show that this instability can be easily triggered in shear flow experiments with complex plasmas, and also can explain shear-induced cavitation observed in numerous experiments with regular complex fluids.

References

- [1] A. V. Ivlev et al., Phys. Rev. Lett. 98, 145003 (2007).
- [2] A. V. Ivlev *et al.*, "First Observation of Electrorheological Plasmas", to be published in *Phys. Rev. Lett.*.
- [3] V. Steinberg *et al.*, "Shear instability in fluids with density dependent viscosity" submitted to *Phys. Rev. Lett.* (2008).

Monolayer complex plasma experiments

V. Nosenko, S. Zhdanov, and G. Morfill

Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany

A complex (dusty) plasma is a suspension of charged solid particles in a plasma. Typical particle size ranges from tens of nanometers to tens of microns. The particles are either grown *in-situ* or introduced into a plasma of a radio-frequency (rf) or direct current (dc) gas discharge. Usually particles acquire a large negative charge, because they collect more electrons than ions from plasma. Due to the mutual interaction of particles and their confinement by electric fields present in plasma they self-organize in an ordered structure that is called a plasma crystal. In the presence of gravity, a monolayer plasma crystal can be formed. In this two-dimensional (2D) crystal, particles interact through a screened Coulomb (Yukawa) potential and self-organize in a triangular lattice with hexagonal symmetry. A typical interparticle separation is of the order of 0.1-1 mm, characteristic frequencies are of the order of 10-100 s⁻¹, and the speed of sound is of the order of 10 mm/s. In addition, the particle motion is not overdamped. Therefore, the fully resolved dynamics of a 2D plasma crystal can be studied using direct video imaging. This makes 2D plasma crystals an excellent model system to study phase transitions, transport phenomena, and linear and nonlinear waves, all at the kinetic level.

Recently, dislocation nucleation and dynamics were observed in a 2D plasma crystal [1]. Edge dislocations were created in pairs in the lattice locations where the shear stress exceeded a threshold. The shear stress was presumably introduced due to the differential rotation of the lattice with two "rigid" domain walls imbedded in it. After nucleation, dislocations moved apart in the glide plane at a speed of approximately twice the sound speed of shear waves and created shear-wave Mach cones.

Observing dislocation nucleation and dynamics at the level of individual "atoms" and in real time allows us to reveal new details of these complex multi-stage processes. We also discuss laser manipulation as an alternative method of creating dislocations in a plasma crystal in a controllable way.

[1] V. Nosenko, S. Zhdanov, and G. Morfill, Phys. Rev. Lett. 99, 025002 (2007).

LABORATORY MODELING OF SUPERSONIC RADIATIVE JETS PROPAGATION IN PLASMAS AND THEIR SCALING TO ASTROPHYSICAL CONDITIONS

V.T. Tikhonchuk¹, Ph. Nicolaï¹, X. Ribeyre¹, C. Stenz¹, G. Schurtz¹, A. Kasperczuk²,

T. Pisarczyk², L. Juha³, E. Krousky³, K. Masek³, M. Pfeifer³, K. Rohlena³, J. Skala³,

J. Ullschmied⁴, M. Kalal⁵, D. Klir⁵, J. Kravarik⁵, P. Kubes⁵

¹Centre Lasers Intenses et Applications, Université Bordeaux 1-CNRS-CEA, Talence, France ²Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland

> ³Institute of Physics AS CR, Prague, Czech Republic ⁴Institute of Plasma Physics AS CR, Prague, Czech Republic

⁵ Czech Technical University in Prague, Prague, Czech Republic

Laboratory studies can address issues relevant to astrophysics [1] and in some cases improve our understanding of the physical processes that occur in astrophysical objects. The issues related to the jet propagation and collimation over considerable distance and their interactions with surrounding media have begun to be addressed these last years. Laboratory plasmas and astrophysical objects have different length, time and density scales. However, the typical velocities are the same, of a few hundred km/s and the similarity criteria [2] can be applied to scale the laboratory jets to astrophysical conditions. Moreover, by choosing appropriate pairs of colliding plasmas, one can fulfil the scaling conditions for the radiation emission rates.

In this presentation, we use a method of jet formation [3], which allows launching a very fast jet having a velocity ~ 400 km/s and the Mach number ~ 10 by using a relatively small laser energy ~ 100 J. The interaction of these jets with a gas puff has been recently studied in an experiment carried out at the PALS laser facility. Varying gas pressure and composition, we show that the nature of interaction zone changes from a quasi adiabatic outflow to a strongly radiatively cooling jet. The fine scale structures of the interaction zone are studied by means of optical and x-ray diagnostics, and they are interpreted with a semi-analytical model and 2D radiation hydrodynamic simulations.

The conclusions from the laboratory experiment are rescaled to the astrophysical conditions.

References

- [1] B. Remington et al, Rev. Mod. Phys. 78, 755 (2007)
- [2] D. Ryutov et al, Phys . Plasmas 8, 1804 (2001)
- [3] Ph. Nicolai et al, Phys. Plasmas 13, 062701 (2007)

High-Mach Number Collisionless Shock and Photo-ionized Non-LTE Plasmas for Laboratory Astrophysics with Intense Lasers

H. Takabe¹, Y. Sakawa¹, T. Kato¹, Y. Kuramitsu¹, H. Nishimura¹, S. Fujioka¹, M. Koenig²,

N. C. Woolsey³, F. L. Wang⁴, G. Zhao⁴, Y. T. Li⁵ and J. Zhang⁶ and K. Mima¹

¹Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan ²LULI, 'Ecole Polytechnique, Palaiseau cedex, 91128, France ³Department of Physics, University of York, Heslington, YO10 5DD, UK ⁴National Astronomical Observatories, CAS, Beijing 100012, China ⁵Institute of Physics, CAS, Beijing 100080, China ⁶Shanghai Jiao Tong University, Shanghai 200030, China

Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to appear in Universe. The subjects studied so far are reviewed, for example, in [1], [2].

The project to promote the laboratory astrophysics with Gekko XII laser facility at Osaka was initiated from April 1, 2007 as a project of ILE institute. It consists of four sub-projects:

- 1. Physics of collisionless shock and particle acceleration,
- 2. 3. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma,
- Physics of planets and meteor impact,

Physics of planets and meteor impact,
 Development of superconducting Terahertz device.
 Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collisionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability, Weibel instability. Detail simulations have been carried out to see the physics of the generation of magnetic fields.

The Weibel instability which is founded in 1959 in plasma physics region is found to be the main reason for the field generation. It has been studied in laser plasma society in 1970-now in relation to ablation instability to fast ignition. It was common in Astrophysics that in order to explain the collisionless shock, for example, of supernova remnants an external week magnetic fields are essential, because of the resemblance with the bow shock on the earth driven by the solar wind. The detail of this physics is reported by Dr. T. Kato in case of electron-positron plasma[3] and such usual plasma[4]. In the first sub-project, we aim at the experimental measurement of the generation of the Weibel instability and related plasma dynamics. The experiment of this subject has been carried out as joint experiment with UK and France.

The second topics is researched as joint experiment with China. By use of the X-ray radiation generated inside the gold cavity in irradiating intense laser, we can generate the photo-ionization dominant plasma. Two experiments have been done at Osaka and Shanghai. The experimental data has been analyzed with non-LTE atomic code newly developed. We found that the nitrogen plasma spectrum heated by 80 eV Planckian radiation is highly ionized, while the free electron temperature reached only to 20 eV[5]. We will report the physical mechanism and give notice that this spectrum can also reproduced with assumption of LTE with 60 eV.

- H. Takabe, Prog. Theo. Phys. Suppl. No. 143, pp.202-265 (2001).
 S. V. Lebedev edt, *High Energy Density Laboratory Astrophysics*, (Springer, 2007).
 T. N. Kato, Astrophysical J. 668, 974 (2007)
 T. N. Kato and H. Takabe, to be submitted to Astrophysical J. (2008)
 F. L. Wang et al., to be published in Physics of Plasmas (2008)

AUTHOR INDEX

Abanades A., P2.135 Abdulaev S., P1.079 Abgrall R., P2.065 Abramov A., I3.052 Abreu E., P1.138, P1.139 Acedo P., P5.072 Adachi M., P1.148 Adam J,-C., O4.042, P4.139, P5.151 Adamovich X.G., P4.158, P5.137 Adams D., P1.131, P1.134 Adams M., P5.023 Afarideh H., P4.140 Afeyan B., P5.128 Agostini M., I1.017, O4.049, P4.074 Agren O., P2.114, P4.184 Agullo O., O4.028, P1.066, P2.072 Ahn J.W., P2.109 Aiba N., P2.071 Airaj M., P2.112 Airoldi A., P1.113 Aïssi A., P5.090 Ait Abderrahmane H., I4.064 Aizawa M., P4.023 Ajendouz A., P1.046, P4.046 Akers A.J., P5.084 Akers R., P1.057, P1.073, P2.018 Akiyama T., P1.056, P2.107 Akli K., O5.061 Albanese R., P2.080, P4.078 Albert F., 11.011 Alberti S., P2.036 Albright B., P4.130 Alcator C-Mod Team, P5.085 Aleksandrov S.E., P2.108 Alekseyev A.G., P4.004 Alexeev N.N., O2.012 Alfier A., O4.034, O4.049, P2.054, P4.005, P5.097 Ali H., P1.012, P2.008 Aliev Yu.M., P5.096 Aliverdiev A., P5.119 Alladio F., I2.029 Allegra L., P1.174 Allen J.E., P2.158, P5.152 Allmaier K., P4.017 Almagri A.F., P2.017, P2.110 Alo E., O2.013 Alonso J.A., P2.028 Alozy E., I2.027 Alper B., O4.034, P1.101 Altukhov A.B., O4.046, P2.087 Ambrosino G., P2.080 Amendt P., D5.001

Amin M., P5.113 Anabitarte E., P2.033 Anan'ev S., P2.137 Anania M.P., P1,148 Anda V., P5.076 Anderson J., P1.033 Anderson J.K., P1.075, P2.110 Anderson K.S., I4.060 André F., P5.090 Andrè M., 04.057 Andreev A.A., P4.128 Andreev N.E., P4.134 Andreev V.F., P4.095 Andrei A., P1.166 Andrejev A.A., P1.126 Andrenucci M., I1.017 Andrew P., O4.033 Andrew Y., I5.073, P4.018, P4.094 Androulakis G.C., P1.122, P2.148, P2.154 Angelino P., I2.023, P1.019, P4.033 Anghel A., P1.168, P1.171 Angioni C., O4.047 Aniel T., P1.022, P1.044 Anikeev A.V., P1.098 Annaratone B.M., P5.136 Annenkov V.I., P2.149 Annou K., P5.161 Ansar Mahmood M., P4.024 Anthonv R., I3.051 Antici P., I2.024, O4.042, O4.043, P2.118, P5.113, D5.006 Antipov S.N., P1.160, P1.161, D1.001 Antoni V., I1.017, P1.026 Antonicci A., O5.061 Antonov V.M., P1.142, P1.192 Antonova T., P5.136 Apfelbaum E.M., P1.159 Apicella M.L., P4.004 Apostolaki D., P2.057 Appel L., P2.055, P2.112, P4.064 Applegate D.A., P4.051 Apruzzese G., P4.004 Arad R., 04.055 Aranvi A., P2.070 Arevalo C., P2.135 Argouarch A., P5.088 Arkhipenko V.I., P4.188 Arosio M., P2.027 Artaud J.F., I3.046, O2.004, P5.027, P5.068 Arzhannikov A.V., P4.103, P5.098 Ascasibar E., P2.030, P2.113 ASDEX Upgrade Team, I1.004, O4.032, P1.034, P1.101, P2.037, P2.071, P4.011, P4.039

Ashikawa N., P4.101 Asinovskii E.I., D1.001 Askarova A.S., P5.148 Askinazi L.G., P1.080, P2.093, P2.103 Asp E., I5.072, P2.036 Assas S.C., P4.041 Astrelin V.T., P4.103, P5.098 Asunta O., O4.036, P5.001, P5.069 Atanasiu C.V., P4.069 Atherton B., P4.127 Atzeni S., P5.106 Audebert P., I2.024, O4.042, P1.135, P2.118, D5.006 Auriemma F., P4.019 Aushin B.B., P2.108 Austin M.E., P5.099 Avdoshin V.V., P2.136 Avramides K.A., P4.105 Axon K.B., 04.054 Ayushin B.B., P1.109, P2.046, P2.097, P2.104 Azechi H., 04.038 Azizov E., P1.008 Baba M., O3.020 Babi D., P1.164 Babich L.P., O3.027, P1.115, P1.151, P4.181, P5.153 Babichev V.N., P5.171 Bacharis M., P2.158, P5.152 Baciero A., P1.094, P2.090, P2.094 Back C.A., P2.127 Badziak J., O4.043, P1.127, P5.125 Bagryansky P.A., P1.098 Bahamida S., P5.157 Bahloul D., P4.117 Bailescu V., P4.113 Bailly I., I2.027 Baity F.W., P4.097 Bak J.G., P2.084, P4.087, P4.089, P4.096 Bakarezos M., P1.122, P2.148, P2.154 Bakharev P.V., P4.192 Bakhareva O.A., P4.106 Bakshaev Yu., P2.137 Balan N., P4.113 Balan P., P2.025, P2.037 Balat - Pichelin M., P1.014, P1.164 Bamford R., I2.036 Baranov Yu., O2.006 Barengolts S.A., P4.012 Barni R., P2.027 Baronova E.O., P2.148, P2.154 Barrera L., P1.095 Barsukov A.G., P1.109 Bartos P., P2.155 Bartov A., P2.137 Baruzzo M., P2.066 Barz J., I1.012 Basiuk V., I3.046, O2.004, P2.112, P5.027, P5.068 Basko M.M., P2.130

Basner R., P2.165 Bastiani-Ceccotti S., I2.024, P1.135 Batani D., O5.061, P4.129, P5.109, P5.119, P5.123, P5.126 Bateman G., P1.001 Batkin V.I., P4.103 Baton S.D., O5.061, P5.109, P5.112 Bauer D., P5.127 Baylor L.R., O4.054, P2.101, P4.098 Bazylev B., P1.015, P5.011 Becker S., P4.127 Becoulet A., I5.076, O4.035 Beg F.N., P5.114 Behar G., I4.061 Behler K., P4.082 Behn R., P1.072 Beidler C.D., P2.113 Beiersdorfer P., P1.084 Beketov I.M., P1.151 Burenkov Î.M., P1.151 Bekhouche M., P4.117 Beklemishev A.D., P1.047, P4.052 Beleites B., P4.137 Bell A., D5.002 Bell M.G., P1.009, P2.109, P4.076 Bell R.E., P1.009, P1.059, P1.108, P2.109, P5.022, P5.060 Bellecci C., P1.170, P1.175 Bellei C., O3.021, O4.040, P4.144, P5.108, P5.116 Belo P., P1.106 Belonohy E., P2.034 Belyaev V.S., P1.120 Belykh V.V., P5.098 Ben Ayed N., I2.020, P1.007, P5.052 Benavides S., P4.136 Bencheriet F., P5.160 Bendovro R.A., P4.153 Benismail A., P4.132 Benisti D., P2.138, P5.105, P5.112 Benkadda S., O4.028, P1.027, P1.066, P2.045, P2.072, P4.042, P5.059 Benova E., P2.163, P4.081 Benuzzi A., P1.140 Benuzzi-Mounaix A., P5.119 Berardo J., P1.149, P2.150 Berbri A., P1.153 Berger M., P1.103, P2.102 Bergmann K., I4.062 Berk H.L., P5.099 Berkery J.W., P1.059, P4.187 Berry L.A., P1.108 Bertalot L., O2.001, P4.084 Berthelier J.-J., P4.191 Berthier T., I4.061 Bertrand P., P1.040, P1.041, P4.038 Bertschinger G., P4.092 Bessarab A.V., P2.149 Besse N., P1.040, P1.041, P4.038

Betti R., I4.060, P1.059, P2.126, P2.127, P5.102 Beurskens M., O2.006, O4.034 Beurskens M.N.A., P4.005 Beyer P., O4.028, P1.027, P2.045, P2.072 Bhattacharvay R., P5.003 Bialek J.M., P1.059 Biancalani A., P1.051, P1.180, P2.176 Biel W., P4.092, P5.078 Bienkowska B., P2.120 Bierwage A., P5.028 Biewer T.M., P4.018, P4.094 Bignon E., I4.061 Bilato R., P2.099, P4.114, P5.094, P5.095 Bilyková O., P2.098 Bindslev H., P1.034, P2.086, P5.070, P5.077 Bingham R., I2.036, I3.053, I4.066, P1.128, P1.130, P2.141, P2.186, P4.179, P4.180, P4.185, P5.155 Bint-e-Munir F., P2.005 Birkenmeier B., P4.110 Bitter M.L., P1.084 Bizarro J.P.S., P4.063, P4.065 Blackwell B.D., P2.113 Blancard C., I2.024 Blanchard P., P1.067 Blanchot N., I4.061 Blanco E., P4.050, P5.013 Blazec J., P2.165 Blaževi A., P4.122, P4.127 Blinov P., P2.137 Bobashev S.V., P1.152 Bobkov V., P4.041, P5.005 Bochkarev S.G., P4.121 Bochkov E.I., P4.181 Bódizs D., P5.079 Boedo J., P1.009, P2.003, P2.109 Boerner P., P4.009 Boeuf, J.-P., 14.057, P5.151 Bogatu I.N., P4.056 Bogdanenko A.O., P2.087 Bogdanov T., P2.163 Bogomolov A.V., P2.046 Bohlen H.G., P4.122 Bohley T., P1.140 Bolzonella T., P2.066, P2.067, P5.097 Bombarda F., P1.113, P2.101, P4.073 Bondarenko I., P1.088 Bonfiglio D., O4.029 Bongers W.A., P1.081 Bonheure G., P4.084 Bonhomme G., P1.006, P2.189, P4.049 Bonitz M., P4.156 Bonnin X., P2.007 Bonoli P.T., P1.108, P2.099, P4.111, P4.114, P5.085 Bonomo F., I1.017, P1.075, P2.054, P4.019 Bonville O., P2.117 Boozer A.H., I1.006, I5.070, P4.187, P5.058

Borghesi M., I4.056, P5.113 Borisenko N.G., I2.027, O2.013 Borra J.P., I3.050 Borrielli A., P2.144 Bortolon A., P2.020, P2.036 Boscheron A., P2.117, P5.126 Boswell R., P1.191 Bottino A., I2.023, P1.019, P4.033 Boubault F., I4.061 Boufendi L., I1.014, O2.016, O3.023, P5.135 Bougdira J., P5.138 Bouquet S., I3.054 Bouquey F., P1.058, D4.004 Bourdelle C., O4.050, P1.017, P1.022, P1.044 Bourdon A., P4.161 Bourgade A., P5.150 Bourgeade A., P2.151, P5.150 Bourgeois N., O3.021, P2.118 Boutin J.Y., 12.027 Bowden M., I2.039 Boyarintsev E.L., P1.142, P1.192 Bozhenkov S.A., P1.079, P1.089 Brabrel B., P1.140 Bradford J., I2.036 Brakel R., P2.113 Brambilla M., P2.099, P4.114, P5.094, P5.095 Brambrink E., P1.135, P1.140, P2.187, P5.109 Brandão B., P1.130, P2.141 Braun F., P5.005 Breil J., 12.027, P4.118 Brémond S., P5.088 Brennan D.P., P2.059, P2.060 Brenner P.W., P4.187 Bret A., P5.105 Breviannis G., P2.038, P5.033 Brezinsek S., I1.005, O4.033 Briguglio S., P5.028, P5.055 Brix M., O2.006, P4.085 Brochard F., P2.189, P4.049, P5.138 Broennimann Ch., P1.084 Brok W., I2.039 Brooks A., P5.058 Brooks N.H., P4.003 Brower D.L., P2.017 Brown C.R.D., P4.131 Browning P.K., P4.007 Bruedgam M., O4.030 Brunetti E., P1.150 Brunsell P., P1.071, P2.056, P4.075 Brygoo S., I2.027 Brzozowski J., P4.115 Budaev V.P., P4.166, P5.019 Budny R.V., P5.022, P5.099 Buechner J., P5.168 Bugrov S., O3.026 Bulanin V.V., P2.093

Bulir J., P5.142 Buratti P., O2.006, P1.069, P4.062 Burcea G., P4.113 Burchenko P.Ya., P1.061 Burdakov A.V., P1.112, P4.103, P5.098 Burenkov O.M., P2.136 Bürger A., P1.081 Burhenn R., P2.113 Burke D.R., P2.110 Burmasov V.S., P4.103, P5.098 Burrell K.H., P5.022 Burza M., P4.134 Bush C., P1.009 Bustos A., P5.135 Butikova J., P2.010 Buyko A.M., P1.115, P1.116 Buzhinskij O., P1.008 Bychenkov V.Yu., P4.121, P4.135 Bychkov V., P2.123 Byhring H.S., P1.191 Cairns R.A., I3.053, P1.128, P2.186, P4.179, P4.185 Calabrò G., O2.006, P2.106, P5.055 Caldas I.L., P1.024 Califano F., P1.176, P2.184 Calvo I., P1.031, P2.043, P4.020 Campbell D., P1.109, P5.087 Camplani M., P4.070 Canal P., P2.117 Canaud B., P2.122 Candy J., P1.017, P1.044 Cang Y., P2.132 Canik J., P2.013 Cannas B., P4.070 Cantarini J., P5.078 Canton A., O4.029, P4.019, P4.074, D1.002 Cao J.Y., P5.086, D2.005 Cao Z., P5.086, D2.003, D2.005 Cappa A., P1.094, P1.107, P5.018 Cappello S., P4.074, P5.035 Carati D., P2.044 Caravelli G., P2.081 Carbone V., O4.057, P1.026 Cardinali A., P2.106, P5.055 Caridi F., P2.144 Carpeggiani P., P5.109, P5.123 Carralero D., O4.048, P2.028 Carraro L., O4.029, P2.026, P4.019, P5.097 Carreras B.A., 04.048, P1.031, P1.042, P2.029, P2.043, P2.053, P4.020 *Carrere M.*, P1.002 Carroll D.C., P5.103, P5.108, P1.134 Cartry G., P1.002 Carvalho P.J., P1.065 Casanova M., I2.027, O2.013, P2.153 Casati A., P1.017, P1.044 Casner A., I2.027, P2.117, P5.126

Caspary K., P1.075 Casper T.A., P2.073, P2.079 Cassart B., P2.044 Casse F., I2.030 Cassou K., P1.132, P1.141, P4.134 Castaldo C., I4.063, P2.106 Castaldo R., O2.006 Castejón F., P1.025, P1.035, P1.095, P1.107, P2.030, P2.113, P5.018, P5.135 Castellanos O.F., P2.033 Castro E., P4.059, P4.167, P5.042 Catto P.J., P4.034 Caturla M.J., P2.135 Caughman J.B.O., P2.101 Caumes J.P., P1.132 Cavallaro S., P4.154 Cavazzana R., I1.017, O4.029, O4.049, D1.002 Ceccherini F., P2.176 Cecconello M., P1.071, P2.056 Ceccotti T., I1.008 Cédric T., I1.010 Celestin S., P4.161 Celona L., P1.174 Cenacchi G., P1.113 Cercek M., P2.166, P2.181 Cerfon A.J., P4.053 Cesario R., O2.006, P2.106 Chakraborty-Thakur S., P1.166 Challis C.D., I2.021, O2.006, P1.069, P1.073 Chambers D.M., P2.129 Chance M.S., P4.055 Chandra D., P1.066 Chang C.S., P1.001, P5.029 Chapman B.E., P1.075 Chapman I., P5.062 Chappuis C., I4.061 Charboneau-Lefort M., P5.128 Charles C., P1.191 Charrier J.F., P2.117 Chaschin M.S., P4.052 Chatzakis J., P1.122, P2.148, P2.154 Chatziantonaki I., P5.093 Chebotarev V.V., P2.170 Chen Guanglong, P1.121 Chen J.B., D2.003 Chen L., I1.001, P1.051, P5.028, P5.056 Chen M., P5.124, D2.003 Chen M.X., P4.112 Chen Z., P4.139 Chenais-Popovics C., I2.027 Cheng J., P2.014 Cheng L.Y., P5.086, D2.005 Cheon J.K., P2.084, P4.087, P4.089 Cherigier-Kovacic L., P1.186 Chernenko A., P2.137

Chernyshev F.V., P1.080, P1.109, P2.046, P2.097, P2.103, P5.081 Chernyshev V.K., P1.115, P1.116, P1.151, P2.136 Chernyshova M., P2.120 Chiavassa G., P5.008 Chmyga A., P1.088 Cho M.H., P4.175 Choi S.W., O3.024 Chowdhuri M.B., P2.082 Chrisman B., P5.117 Christ-Koch S., P2.102 Chu M.S., P4.055, P4.056, P4.083, P5.028 Chudin N.V., P1.045 Chudnovskiv A.N., P1.068 Chung H., I2.025 Chung K.-S., P4.090, P4.091 Chuvanov V.A., P1.109 Ciavola G., P1.174 Ciobanu S.S., P5.144 Cipiccia S., P1.144 Cirant S., P2.026, P4.082 Ciraolo G., P1.020, P5.008 Citrin J., 04.055 Claire N., P4.046, P5.169 Clairet F., P1.017, P1.022, P1.044, P1.106, P5.088 Clark D., D5.001 Clark E.L., P1.122, P2.148, P2.154, P4.131 Clark R.J., P5.108 Clarke R.J., O4.040, P5.113, P5.116 Classen I., P1.090 Clayton C., P2.150, P4.153 *Clever M.*, P4.016 Coad P., O4.033, P4.113 Coda S., P1.099, P5.062 Coddet C., P5.146 Coelho R., P1.065 Coenen J.W., P4.016 *Coïc H.*, I4.061 Colas L., P5.088 Cole A., 04.035 Combis P., I2.024, P4.141 Combs S.K., P2.101, P4.098 Conde L., P5.165 Connor J.W., P4.051 Conway G., I3.040, O4.032, P4.041 Conway N.J., P2.018, P2.088 Cooper W.A., P4.061 *Coppa G.*, P4.147 Coppi B., P1.113, P1.177, P2.023, P2.101, P4.027, P4.073, P5.154 Coppins M., P2.158, P5.152 Corde S., I1.011 Corrigan G., P1.106, P5.053, D1.003 Cossé P., I2.024 Coster D., P2.007, P2.112, P4.003, P5.027 Costin C., P4.093

Costley A., O2.001 Couëdel L., O2.016, O3.023, P5.135 Counsell G., I2.020, P1.007, P2.048, P4.035, P5.152 Courtois C., I2.027, O2.010, P2.129 Cowan J.S., P4.142 Cowan T.E., P4.119, P4.142 Cox W.A., P2.110 Crabtree C., P2.023 Craig D., P1.075 Cramer N.F., P2.160 Criado A.R., P5.072 Crisanti F., P5.055 Crocker N.A., P5.060 Crombe K., 15.073, P4.018, P4.094 Cros B., P4.134 Cross A.W., I3.053, P2.186, P4.179 Cui Z., P5.026 Cunningham G., P1.073, P4.066, P5.084 Cupido L., O4.032, P4.050, P5.013 Curchod L., P1.099 Czarnecka A., P1.127, P4.123 Czifrus Sz., P5.079 D'Humières E., P4.119 D'Oliveira P., I1.008 D'yachkov L.G., P1.160, P1.161 Da Graca S., O4.030, O4.032 Dal Bello S., D1.002 Damiens-Dupont C., I4.061 Dangor A.E., O3.021, O4.040, P4.144, P5.108, P5.116 Danko S., P2.137 Dannert T., I2.023 Darbon S., I2.027 Darbos C., P1.058, D4.004 Darrow D., P5.060 Dasgupta B., O4.059 Daughton W., P4.130 Davidson R.C., P2.139 Davies J.A., I4.066 Davies J.R., P5.106, P5.120 Davoine X., P5.130 D'Azevedo E.A., P2.058 De Andrea González A., D2.002 De Angelis R., O2.006 De Baar M., P1.081 De Blank H.J., P4.009 De Gevigney B.D., P4.187 De la Cal E., P2.028 De la Fe J.M.G., P2.183 De la Luna E., I5.073, P1.095, P2.030, P5.074 *De Loos M.J.*, P1.148 De Pablos J.L., P2.028 De Vries P., I2.021, P4.018 Debbache D., P4.117 DeBoo J.C., I2.021, P2.073 Decker J., I3.046, P1.097, P1.099, P2.098, P4.062 Decyk V., P1.042

DeGrassie J.S., P5.022 DeGrassie V., O2.005 Dejarnac R., P4.081 Delabie E., P4.092, P5.063 Delahave F., O3.025 Del-Castillo-Negrete D., P4.042 Delettrez J.A., I4.060, P2.127 Delgado J.M., P2.047 DelRio E., P2.135 Demidov V.S., P2.145 Demidova E.V., P2.145 Den Hartog D.J., P1.075 Dendy R., 12.020, P2.048 Deng W., P5.101 Denner P.J., P4.064 Depierreux S., I2.027, O2.013 Desai S.S., P4.089 Desai T., P4.129 Deschaseaux G., I4.061 Desgranges C., P5.088 Deshko G., P1.088 Detragiache P., P1.113 Devoy P., P4.007 DeVries P.C., O2.006, P4.022 Dewhurst J.M., P2.048 Dezairi A., P1.046 Dezulian R., P5.119 Di Piazza A., I3.049 Di Troia C., P5.055 Diaconu C., P1.166 Diallo A., I4.065, P1.184 Diamond P., I2.028, P5.016, P5.158 Dias F.M., P4.081 Dias J.M., P1.149, P2.150 Diaz D., P2.135 Dieckmann M.E., O5.067, .174, P4.182 Dif-Pradalier G., P1.017, P4.033 DIII-D Team, P2.071 Dinescu G., P1.167, P2.167 Ding B.J., P4.102 Ding W.X., P2.017 Ding X., P5.026 Ding X.T., D5.003 Di-Nicola P., I2.027, O2.013 Dinklage A., P2.113 Dinuta G., P4.113 Diebli M., P5.160 Djeridane Y., I3.052 Doerner R. P., P2.004 Dokouka V., O2.004 Dokuka V., P4.066 Dolgachev G.I., P2.134 Dolin V., P1.151 Dolin Yu.N., P2.136 Domier C.W., P1.090 Dong J.Q., P2.014, D5.003

Donin A.S., P1.098 Donné A.J.H., P1.090 Donoso J.M., O2.017, P5.165 Donsko Å.N., O3.027 Donskoi Å.N., P5.153 Dorchies F., P1.135, P5.109 Doron R., 04.055 Douglas J., P1.023 Doveil F., P1.186, P5.090, P5.169 Dowling J., O4.054 Doyle E.J., P2.073 Drake J.R., P2.056 Dréan V., O5.060, P2.124, P2.126 Drenik A., P1.014, P1.166 Dromey B., P1.131, P1.134, P5.108 Drouin M., P4.141, P5.112 Drozdovskii A.A., P2.130 Drury L.O.C., 05.067 Duan X., P5.026 Duan X.R., D5.003 Duarte P., P1.021, P5.075 Dubrouil A., P5.109 Dubuit N., P5.151 Duday P.V., P1.151, P2.136 Dudin S.V., P2.145 Dudin V.I., P1.151, P2.136, P5.006 Dudson B., I2.020, P1.007, P2.048 Dumbrajs O., P1.062, P4.047, P4.105 Dumont R., P1.058, P2.042, P2.100 Dumortier P., P1.104, P4.107 Dunai D., O4.031, P5.076 Dunlop M.W., I4.066 Dupuis C., I1.014 Durut F., I2.027 Duval A., 12.027 Duval B.P., P2.020, P2.036 Dux R., P2.083, P4.011, P4.039 Dyachenko V.V., P2.087, P2.097 Easter J., P5.107 Ebrahimi F., P1.075, P2.017 Edlund E.M., P5.100 EFDA-JET contributors, P4.084 Egorychev B.T., P2.131 Ehsan Z., P5.167 Eich T., P2.012 Eikenberry E.F., P1.084 Ekedahl A., P5.088 Elbaz D., P2.122 Elbeze D., P4.062 Elkin B., I1.012 Elkina N., P5.168 El-Taibany W.F., P4.164 Endler M., P1.043, P5.078 Endo T., P1.140 Endstrasser N., P5.007 Ennis D.A., P1.075

Eremin D.Yu., P5.051 Erents S.K., O4.034 Eriksson A., P1.048 Eriksson L.E., P2.123 Eriksson L.-G., P1.022, P1.058, P1.087, P2.042, P2.100, P2.112, P4.041, P4.115, P5.027, P5.054, P5.062 Ersfeld B., P1.137, P1.150, P4.151 Escande D., I2.034 Escarguel A., P4.046 Esipov L.A., O4.046, P2.087, P4.043 Es-sebbar Et., P2.169 Estrada T., P1.025, P2.030, P2.113, P4.050, P5.013 Ethier S., P5.023 Evans R.G., O5.061, P5.118 Evans T.E., I5.070P2.003, P2.009, P4.097, P4.098 Faganello M., P1.176 Fahrbach H.-U., P1.055 *Faivre G.*, P1.132 Fajardo M., I2.025, P1.132, P1.138, P1.141 Fajardo R.M., P2.125 Falchetto G., I2.023, P1.017, P1.022, P1.044 Falize E., I3.054 *Falter H.-D.*, P1.103 Fang F., P4.153 Fanni A., P4.070 Fantz U., P1.103, P2.102 Farengo R., P2.115, P5.049 Farina D., P5.074 Farokhi B., P4.165 Fasoli A., I4.065, P1.067, P1.184, P2.182, P5.083 Fassina A., O4.049, P4.019 Faure J., P4.132, P5.130 Faussurier G., I2.024 FBX team, P4.100, P5.082 Fedotkin A.S., P2.134 Fehér T., P4.077 Fehske H., P4.156 Fendrych F., P1.162 Feng B.B., P5.101, P5.026, D5.003 Feng J.Q., P4.102 Feng K., P5.086, D2.005 Feng Y., P2.009, P2.013, P2.085, P2.113 Fenstermache M.E., P2.009, P4.098 Fenzi C., P1.006, P1.022 Fenzi-Bonizec C., P1.044 Fernandes H., P1.021, P1.065, P2.040, P5.075 Fernández A., P1.094, P5.018 Fernandez J.C., P4.130, P4.119, P4.142 Fernández L.A., P5.135 Ferrari H., P2.115 Ferron J.R., O2.006, P2.073, P2.079 Fertman A.D., P2.145 Fesenyuk O.P., P4.072 Fessey J., P5.074 Feugeas J.L., I2.027, P2.126 Fichtner H., P5.156

Field A.R., O4.031, P2.018 Figini L., P1.095, P5.074 Figueira G., P1.149 Figueiredo H., P1.021, P2.025 Fiksel G., P1.075, P2.017 Filinov A.V., P4.156 Filinov V.S., P4.156 Filippov A.V., P5.171 Filler A., 04.055 Finken K.H., O4.052, P1.079, P1.089, P4.016 Finkenthal M., P2.081 Finnegan S.M., P1.190 Fischer R., O2.002, P4.010 Fisher R., 04.032 Fitour R., I1.011, P4.132 Fiuza F., P1.149, P4.150, P5.120 Flacco A., P4.129, P4.141 Fletcher L., P4.037 Flippo K.A., P4.119, P4.130, P4.127, P4.142 Florido R., O2.011, P2.147 Foerster E., O5.061, P2.129 Foest R., P4.173 Fogaccia G., P5.055 Földes I.B., O2.014 Fonseca R.A., I2.036, I3.048, P4.143, P4.148, P4.150, P4.155, P4.180, P5.120 Fontanesi M., P2.027 Foord M.E., I2.025 Forest C.B., P2.110 Fortov V.E., I2.033, O2.007, P1.160, P1.161, P1.187, P2.145, P2.162, P4.156, P4.158, P5.137, P5.139, P5.162, P5.166, P5.171, D1.001 Foster A., D1.003 Foster P.S., P1.131, P1.134 Fourment C., I2.027, P5.109, P5.126 Foust C., P2.101 Frank A., O3.026, P2.188, P4.122 Frantzeskakis D., P4.162 Franz P., I1.017, P1.075 Franzen P., P1.103, P2.102 Frassinetti L., P1.071, P2.056 Frattolillo A., P2.101 Fredrickson E.D., P4.058, P5.060 Fredriksen A., P1.191 Freidberg J.P., P4.053 Frenje J.A., I4.060, P2.127 Frerichs H.G., P2.009, P4.016 Frigione D., P1.101, P4.099, P4.104 Fröschle M., P1.103, P2.102 Fruchtman A., O5.065 FTU team, P2.026 Fu G., P5.050, P5.099 Fu S., D5.004 Fuchs J., I2.024, O4.033, O4.042, O4.043, P2.012, P2.118. P5.113, D5.006 Fuchs M., P4.143, P4.146

Fuchs V., P2.015, P2.096, P2.098 Fuentes C., P1.094 Fuhr G., P1.027, P2.045 Fujieda H., P2.075 Fujimoto Y., O4.038 Fujioka S., I5.082, O4.038, P5.126 Fujisawa A., P2.113, P4.044, P5.158 Fukao M., P5.158 Fukumasa O., P5.147 Fukuyama A., P1.049 Fülöp T., P1.032, P2.042, P4.077 Fulop T., P2.078 Funaba H., I2.022, P1.054, P2.113 Fundamenski W., O4.033, P4.005, P5.053 Furno I., I4.065, P1.184, P2.182 Furtula V., P2.086, P5.070 Fussmann G., P5.002 Futatani S., P4.042 Gabellieri L., P2.026 Gaillard S.A., P4.119, P4.142 Gaio E., P4.075 Gál K., P1.101, P1.109, P4.077 Galca A.C., P1.166 Galeotti L., P2.184 Gallacher J.G., P1.149 Gambino N., P1.174, P2.142 Gamez B., P2.135 Gámez L., P2.135 Gammino S., P1.174, P2.142, P2.144 Ganeev R.A., 03.020 Gans T., 12.038 Gao W., P5.146 Gao X., P4.102 Gao Y., D2.001, D5.003 Garanin S.F., P1.115, P1.116 Garanin S.G., P2.149 Garavaglia S., P5.074 Garbet X., 04.028, 04.050, P1.017, P1.020, P1.022, P1.027, P1.066, P2.045, P4.033, P4.062, P5.008 García C., 05.062 Garcia G., P1.094 Garcia J., I3.046, P5.018 Garcia L., P2.043, P4.020 García-Fernández C., P1.141, P2.133 Garcia-Martinez P.L., P5.049 García-Muñoz M., O4.030, P1.055, P1.094 García-Regaña J.M., P1.107 Gargate L., I2.036, P4.180 Garkusha I.E., P2.170 Garofalo A.M., O4.035, P4.055, P4.056, P5.022 Garrigues L., P5.151 Gary S., I2.027 Garzotti L., O4.054, P1.048, P4.099, P4.104 Gates D.A., I5.070, P1.009, P1.059, P2.109 Gaudio P., P1.170, P1.175 Gautheron Y., I4.061

Gauthier E., P1.006 Gauthier J.C., I2.027, P1.132 Gautier C., P4.130 Gautier D.C., P4.119, P4.142 Gavrikov A.V., P1.187, P5.162, P5.171 Geiger J., P2.051, P2.062, P2.113 Geindre J.-P., I1.010, I2.024 Geissel M., P1.134, P1.135, P1.145, P4.127 Geissler M., O3.019, O4.039, P1.131, P4.136, P4.143 Gemisic-Adamov M., P2.001, P4.002 Genoud G., P4.134 Gerbaud T., P1.006, P1.017, P1.044 Gerhardt S.P., 15.070 Gericke D., I1.016, P2.152 Ghendrih Ph., P1.020, P4.033, P5.008 Gherardi N., P2.169 Ghezal A., P4.117 Ghoranneviss M., P1.069 Giannone L., P2.012, P4.082 Gibert P., I4.061 Gibson K.J., I2.036 Gil J.M., O2.011, P2.147 Gillespie K.M., I3.053, P2.186, P4.179, P4.185 Gimblett C.G., P4.007 Giovannozzi E., I4.063, O2.006, O4.034, P4.005 Girling M.T., P4.131 Giroud C., O2.006, P4.018, P4.022 Giruzzi G., I3.046, P1.058, P5.068, D4.004 Giulietti A., O5.061 Giulietti D., O5.061 Gizzi L.A., 05.061 Glebov V.Yu., I4.060 Globus-M Team, P2.046 Glowacz S., P5.027 Glushkov A.V., P1.128, P2.175 Glvbin A.M., P2.136 Gobbin M., P2.054, P5.035 Godyak V., P1.183 Goedheer W., I2.032, P4.009 Goetz J.A., P2.110 Gohil P., O2.005 Golant V.E., P1.080, P2.103 Goldman M.V., O4.058 Golikov A.A., P4.108 Golish V.I., P1.010 Goloborod'ko V., P1.087 Golubev A.A., P2.130, P2.145 Golyatina R.I., P4.159 Goncharov A., P2.172 Goncharov V.N., I4.060 Gondhalekar A., P1.093 Goniche M., P1.106, P4.062 Gonzalez C., P1.117 González M., O5.062, P1.117, P2.133 *Goodman J.*, 05.066 Goodman T.P., I5.072

Gopal A., O3.021, P1.122, P2.148, P2.154 Goranskava D.N., P5.162 Gorbachev Yu.N., P1.116 Gorbunov Ya.V., P5.004 Gorelenkov N.N., P5.060, P5.099 Gori S., P1.065 Goshu S., P1.085 Goto M., P2.082, P2.095 Graffagnino V., P2.186 Grandgirard V., I2.023, P1.017, P4.033, P5.008 Granja C., P1.126 Granstedt E.M., P4.058 Granucci G., P2.026 Grasso D., P2.116, P2.179, P5.054 Graswinckel M.F., P1.081 Grauer R., P5.156 Graves J.P., P4.061, P5.062 Gravier E., P1.040, P1.041, P4.038 Grav T., P1.009 Grebenshchikov S.E., P5.071 Grech M., I2.027, O2.013, P2.118, P2.140 Green J.S., O5.061, P5.108 Greenwald M., P1.074 Gregory C., I3.054, P1.140, P2.129, P2.187 Gremillet L., P2,138, P4,141, P5,105, P5,112 Grésillon D.M., P4.086, P4.189 Gribov Y.V., P2.074 Grinenko A., P2.152 Grinevich B.E., P1.116 Grismayer T., P2.118, P4.139 Groebner R.J., P2.024, P2.073 Grossetti G., P5.074 Groth M., P4.003 Gruber O., I3.042, O2.003 Grüner F., P4.127, P4.143, P4.146 Grvaznevich M., I3.044, O2.006, P1.069, P2.040, P4.064 Gu M.-F., P1.084 Gu Y., D5.004 Guasp J., P1.094, P2.049 Gubarev S.P., P1.061 Gubskii K.L., P2.130 Guenter S., I1.004, O4.030, P2.071 Guillbaud O., P1.132 Guillerminet B., P2.112 Guimaraes-Filho Z.O., P1.024 Guimarais L., P4.050 Guirlet R., O4.050 Gumbrell E.T., P4.131 Gunn A.G., P2.186 Gunn J.P., P2.015, P1.006, P5.088 Günter S., P1.055, P1.077, P1.078, P2.064 *Günther M.*, P4.122 Guo S.C., P5.035 Gupta A., P1.011 Gurcan O.D., P5.016 Gurchenko A.D., O4.046

Gurl C., 04.054 Gurnitskava E.P., P2.175 Gusakov E.Z., O4.046, P1.082, P1.096, P2.089, P4.086, P4.188 Gusein-zade N.G., P2.161 Gusev V.K., P1.109, P2.046, P2.097, P2.104, P2.108 Gushenets V., P2.171 Gutierrez-Tapia C., P1.021 Gutser R., P2.102 Gyergyek T., P2.166, P2.181 Haass M., P2.165 Habara H., P5.111 Habs D., O4.039, P4.127, P4.130, P4.136, P4.143, P4.146 Hagelaar G.J.M., P5.151 Hagl T., O2.007 Hagnestal A., P4.184 Hahm T.S., P5.016, P5.023 Hahn M.S., P4.187 Haines M.G., P5.107, P5.114 Hajakbari F., P1.069 Hajdu J., P1.139 Hall I.M., P2.129 Hallatschek K., P1.036 Hallo L., O5.060, P2.151, P5.150 Halpern F., P1.001 Handlev R., P4.113 Hansen A., P1.166 Hansen F., I3.055 Hapgood M., I2.036 Happel T., P4.050, P5.013 Hardin R.A., P1.166, P5.143 Harhausen J., P4.003 Harmand M., P1.135 Harres K., P4.119, P4.122, P4.127, P4.142 Harris J.H., P2.113 Hartfuß H.-J., P5.078 Harting D., P2.009 Hartmann O., I4.061 Harvey R.W., P1.108, P4.111 Harvey Z., P1.166 Hassan S.M., P1.122, P2.148, P2.154 Hassanein A., P2.170 Hastie R.J., P2.116 Hatsagortsyan K.Z., I3.049 Haupt M., I1.012 Havlicek J., P4.080 Havlickova E., P2.155 Hawkes N.C., I5.073, P4.018, P4.085, P4.094 He J., D5.004 He W., 13.053 Heathcote R., O3.021, O4.040, P5.116 Hébert D., P5.150 Hegelich B.M., P4.119, P4.130, P4.142 Hegelich M., P4.127 Heidbrink W.W., P5.028, P5.060, P5.099 Heidinger R., P1.081 Heikkinen J.A., P4.045, P4.047, P5.015, P5.036

Heinemann B., P1.103, P2.102 Helander P., P1.032, P2.078, P2.116, P4.077 Hellsten T., P4.115, P5.014 Hender T.C., O2.006, P1.069, P4.066 Henderson M.A., P5.087 Henig A., O4.039, P4.130, P5.108, P5.116 Hennen B.A., P1.081 Hennequin P., P1.017, P1.020, P1.022, P1.044, P4.021 Henry O., I2.027, P2.117 Herman Z., P5.007 Héron A., O4.042, P4.139, P5.151 Herranz J., P5.018 Herreras Y., P2.135 Herrmann A., P2.010, P2.012, P2.037, P4.075 Herrmann D., P4.136 Hervé A., I2.027 Hervé G., I1.010 Heßling T., P4.122 Heuraux S., P1.044, P1.082, P1.096, P2.089, P4.021 Heyn M.F., P5.009 Hicks N.K., O4.030, P4.082 Hidalgo C., O4.048, P1.021, P2.021, P2.028, P2.113, P5.013 Hidding B., P4.136 Hildebrandt D., P5.078 Hill K.W., P1.084 Hillis D.L., P4.094 Himura H., P4.067, P4.068 Hirsch M., P2.034, P5.078 Hirshman S.P., P2.058, P4.061 Hizanidis K., O4.051, P2.045, P2.185 HL-2A team, D5.003 Hnat B., I2.020, P2.048 Ho D., D5.001 Hoarty D.J., P4.131 Hobirk J., I2.021 Hobrik J., O2.003 Hoekzema J.A., P1.081 Hoffmann D.H.H., P4.122 Hogeweij G.M.D., O2.003, P5.034 Höhnle H., P4.110 Hojabri A., P1.069 Hojo H., P1.085 HoKim G., P4.174 Holcomb C.T., P2.073 Hollmann E.M., P2.004, P2.003 Holmström K., P4.115 Holzhauer E., P4.110 Hölzl M., P2.064 Homer P., I2.025 Homma H., O4.038 Hong M.P., O3.024 Hong W., P5.026 Hong W.Y., P2.014 Honrubia J., 15.078, P5.125 Hooker S.M., P4.143, P4.146

Horacek J., P4.080 Hörlein R., O4.039, P1.131, P1.134, P1.145, P4.143, P4.146 Horton L.D., O2.003, P2.024, P2.071, P2.083 Hosea J.C., P1.108, P4.097 Hou B., P5.107 Houlberg W., P1.109 Howe J., I3.054, P2.129 Howell D., 02.006 Hrach R., P2.155 Hrachova V., P2.155 Hristov V., P1.028 Hu B., P1.059 Hua M-D., P2.018, P4.022 Huang X., D5.004 Huang Y., P5.026 Huart R., P2.065 Hubbard A., P1.074 Hubbard A.E., O4.034, P1.005, P4.111 Huber A., 04.033 *Huber P.*, P2.162 Hueller S., O4.042 Hughes D., I2.031 Hughes J.W., 04.034, P1.005, P1.074 Hugon R., P5.138 Hugonnot E., I4.061 Hulin S., I2.027, P5.109 *Hüller S.*, O2.013 Humphreys D.A., P2.073, P2.079, P2.003 Huser G., I2.027, O2.010, P2.117 Huysmans G.T.A., 04.035, P2.052, P2.065, P2.112, P5.027 Hyatt A.W., P2.073 Hynönen V., O4.036, P5.001 HyunCho J., P4.174 Ibañez L.F., P5.122 Ichiguchi K., P2.053 Ida K., I2.022, P1.054, P1.056, P2.113 Ide S., I1.007 Ido T., P1.054 Igami H., P4.101 Igitkhanov Y., P1.015, P5.011 Ignatov A.M., P1.157 Igochine V., O4.030, P1.055, P1.062, P2.066, P2.070 Ikeda R., P2.107 Ikezoe R., P4.067, P4.068 Il'kaev R.I., P5.153 Ilgisonis V.I., P1.053 Imai N., P1.085 Imai T., P1.085 Imbeaux F., I3.046, O2.003, O4.050, P1.017, P1.022, P1.044, P2.112, P5.027, P5.034 In Y., P4.055, P4.056 Inagaki S., P1.054, P4.044, P5.017, P5.158 Ince-Cushman A.C., I4.058, P1.084, P4.111 Innocente P., P4.019, P4.074, P5.097, P5.126, D1.002 Ionita C., P2.025, P2.037, P2.177, P4.093 Ionita E.R., P2.167

Ionita M.D., P2.167 Iosseliani D.D., P2.130 Iraii D., P1.184 Irie M., P4.100, P5.082 Irzak M.A., P1.080 Isaev N.V., P5.145 Isayama A., P2.067, P2.092 Ishida A., P5.048 Islam M.R., P4.151 Isliker H., P1.027, P1.029, P2.041, P2.045 Isobe M., O4.038, P1.054, P1.056, P2.107 Issac R.C., P1.149 Itakura A., P1.085 Itoh K., P5.059, P5.158 Itoh S.-I., P4.044, P5.059, P5.158 Itoh V., P4.044 Ivanov A.A., P1.072, P1.098, P1.112, P2.069 Ivanov A.I., O2.007 Ivanov A.S., P5.162 Ivanov I.A., P4.103, P5.098 Ivanov I.B., P5.009 Ivanov N.V., P1.068 Ivanov V.À., P1.151, P2.136 Ivanova D.M., P4.106 Ivanova P., P4.081 Ivanova-Stanik I.M., P2.120 Ivanovskiy A.V., P1.115, P1.116, P1.151, P2.131, P2.136 Ivantsivsky M.V., P4.103, P5.098 Ivlev A.V., I5.079, O2.007, P1.154, P2.162, P5.139 Iwamoto A., O4.038 Izgorodin V.M., P2.149 Jablonski S., O4.043, P5.125 Jachmich S., O4.033, O4.052, P4.013 Jäckel O., P4.137 Jackson G.L., P2.073, P2.079, P4.055, P4.056, P5.022 Jadaud J.P., 12.027 Jaeger E.F., P1.108 Jaeger S., P4.046 Jafer R., P5.103 Jakubowski L., P5.075 Jakubowski M.W., O4.052, P1.079, P1.089, P2.016, P4.013, P4.016 James A., P2.003 James B.W., O2.016 James M., P4.051 Janeschitz G., P1.015, P4.079, P5.011, P5.057 Janhunen S., I2.023, P4.045, P4.047, P5.015, P5.036 Janvier M., P4.022 Jarboe T.R., P4.076 Jaroszynski D.A., I1.009, P1.137, P1.144, P1.147, P1.149, P1.150, P4.151 Jaspers R., P1.079, P1.090, P4.092 Jenko F., I2.023, P1.038 Jentschura U.D., I3.049 Jequier F., I2.027 Jernigan T.C., P2.003, P4.098

JET EFDA contributors, I1.005, I2.018, I2.021, I3.044, I4.059, I5.073, P1.067, P1.069, P1.093, P1.101, P4.094, P5.029, P5.083 Ji X.Q., P5.101 Jiang S.E., P2.121, D2.003 Jiang S.F., D2.005, P5.086 Jiang T., P5.086, D2.005 Jie Y.X., P4.102 Jiménez-Gómez R., P1.094 Jimenez-Rey D., P1.094, P2.090, P2.094 Jitsuno T., O4.038 Joffrin E., I2.021, O2.006, P1.069 Johnson E.V., I3.052 Johnson M.F., P4.022 Johnson R., P4.130 Johnson R.P., P4.119 Johnson T., O4.036, P1.093, P4.115, P5.001, P5.014, P5.029, P5.062 Johzaki T., O4.038, O4.045, P4.120, P5.117, P5.121 Jolliet S., I2.023, P1.019, P4.033 Joseph I., P2.009 Joshi C., 04.040 JT-60 team, I1.007 Jucker M., P5.041 Juha L., I5.081, P1.126, P2.120 Jung M., P4.175 Jungwirth K., P4.133 Juul Rasmussen J., P2.025 Ka E.M., P4.096 Kadomtsev M.B., P1.003, P1.004 Kaempfer T., O5.061 Kagan G., P4.034 Kaganovich I.D., O4.044, P2.139, P5.149 Kai T., P5.126 Kaita R., P1.009, P2.081, P2.109 Kakurin A.M., P1.068 Kalal M., I5.081, P1.117, P1.118 Kalhoff T., P2.021 Kaliakatsos J., P1.122 Kalinin Yu., P2.137 Kalinina D., P4.106 Kalinowska Z., P2.120 Kallenbach A., P4.003, P4.010, P4.011, P4.039 Kallman J., P1.009 Kalupin D., P2.112, P4.048, P5.027 Kaluza M., O4.040, P4.137, P5.108, P5.116 Kalvin S., P2.070, P2.111 Kamada Y., P2.068 Kamataki K., P4.044, P5.158 Kamberov G., P1.028 Kamelander G., P4.099, P4.104 Kamneva S.A., P4.166 Kamperides C., O4.040, P4.144 Kamran Siddiqui M.H., I4.064 Kang Z.H., P5.086, D2.005 Kantor M., P1.079

Kantsyrev A.V., P2.130 Kar S., I5.077, P1.131, P1.134, P5.103, P5.108, P5.116 Karabourniotis D., I1.015 Karpenko E.I., P1.010, P5.148 Karpov G.V., P1.151 Karpov M.A., P2.130 Karpushov A., P2.020 Karsch S., O4.039, P4.143P4.146 Kasahara H., P4.101 Kasilov S.V., P4.017, P5.009, P5.021 Kasotakis G., O4.056 Kasparek W., P4.110 Kasperczuk A., I5.081, P1.117, P1.118 Kasuva N., P4.044, P5.158 Kato T., 15.082 Kato V., P1.148 Katsuro-Hopkins O.N., P1.059 Katz M.M., P2.145 Kaufman M.C., P2.110 Kaveeva E., P5.020 Kavin A.A., P2.074 Kawaguchi M., P5.158 Kawahata K., P5.017 Kawai Y., P4.044, P5.158 Kawamura T., P5.126 Kawanaka J., O4.038 Kaye S., P1.009, P5.022, P5.023 Kazakov E., P2.137 Kedziora D.J., P1.157 Keeling D., P1.073 Keitel C.H., 13.049 Kellett B.J., I3.053, P2.186, P4.179, P4.185, P5.155 Kemp A., P5.117 Kempenaars M.A.H., O4.034, P4.005 Kendl A., I2.023, P1.018, P2.037, P5.007 Kern S., P4.105 Kernbichler W., P4.017, P5.009, P5.021 Kersten H., P2.164, P2.165, P4.168 Kevrekidis P., P4.162 Khalzov I.V., P1.053 Khan M.W.M., P1.071, P2.056 Kharchenko N., P4.176 Khayrutdinov R.R., O2.004, P2.074, P4.066 Khetselius O.Yu., P1.129, P2.175 Khimchenko L.N., P4.166 Khishchenko K.V., P1.181 Khitrov S.A., P2.097 Khodeev I.A., P2.134 Khomkin A.L., P1.185 Khorshid P., P1.086 Khrapak S.A., O2.007, O2.008 Khrebtov S., P1.088 Khromov N.A., P2.108 Khrustalev Yu.V., P5.137 Kick M., P5.081 Kiefer D., O4.039, P4.130

Kilkenny J.D., P2.127 Killian T., I2.019 Kim C.-B., P2.022 Kim C.C., P2.060 Kim D.C., O3.024, P4.175 Kim E., O5.068, P1.033 Kim Eun-jin, P1.023 Kim G.H., O3.024 Kim J.Y., P5.025, P5.091 *Kim S.H.*, O2.004 Kim S.S., P5.091 Kimura K., P1.085 *Kimura T.*, P1.140 Kingsep A., P2.137 Kinjo K., P4.109 Kinsey J., P4.036 Kiptily V., P1.087, P1.093 Kireenko A.V., P1.098 Kirillin A.V., D1.001 Kirillov G.A., P2.149 Kirillov K.Yu., P1.098 Kirk A., I2.020, P2.048, O4.031, P1.007, P4.035 Kislov D.A., P2.069 Kisslinger J., P2.085 Kissmann R., P5.156 Kiviniemi T.P., P4.045, P4.047, P5.015, P5.036 Kleimann J., P5.156 Klein A., P1.067, P5.083 Klein R., P1.040, P1.041, P4.038 Klimo O., P2.143, P4.138 Kline J., P4.119 Klir D., I5.081, P2.143 Klumov B., P1.155, P2.162 Kmetik V., P2.143 Knauer J.P., P2.127 Kneip S., O3.021, O4.040, P4.144, P5.108, P5.116 Knobloch-Maas R., P4.122 Knudsen D.J., P1.190 Ko J.-S., P4.111 Ko M.K., P4.171 Kobayashi M., P1.076, P2.113 Kocan M., P1.006 Koch R., P2.105 Kochergin M.M., P2.104, P2.108 Köchl F., O2.003, O4.054, P4.099, P4.104, P5.034, P4.028 Kocsis G., P5.079, P1.101, P2.070, P2.111, P5.078 Kodama R., I3.054, O4.038, P2.118, P2.187, P5.111, P5.113 Koenig M., I3.054, I5.082, O5.061, P1.135, P1.140, P2.187, P5.109, P5.119, P5.126 Koepke M.E., P1.190 Koester P., O5.061 Koga M., O4.038 Köhn A., P4.110 Kolerov S.B., P2.145 Kolesnichenko Ya.I., P4.072 Kolesnikov S.A., P2.145

Kolosov M.V., P5.098 Komarov A., P1.088 Komarov V., P1.013 Kominis Y., O4.051, P2.185 Komori A., I2.022, P1.076, P2.048, P4.101, P5.003 Kompaneets R., I5.079, P1.154 Kondo K., O4.038, P4.042, P5.111 König R., P2.113, P5.078 Konopka U., P1.154 Konz C., P2.024, P2.071, P2.112 Korchagin V.P., P1.151, P2.136, P5.006 Kornejew P., P5.078 Kornev V.A., P1.080, P2.093, P2.103 Korolev V.A., P2.137, P2.145 Korotkov A., O4.033, P1.093 Korsholm S.B., P1.034, P1.081, P2.086, P5.070, P5.077 Kortshagen U., I3.051 Koryagin S.A., P1.178 Korzhavina M.S., P1.098 Kos M., P1.132 Koshkarev D.G., O2.012 Koskela T., O4.036, P5.001 Koslowski H.R., P5.063 Kosolapova N.V., P1.082 Kostomarov D.P., P1.091 Kotov V., P1.013, P4.009 Koukouloyannis V., P4.162, P4.165 Kouprienko D.V., O4.046 Kourakis I., P4.162, P4.164, P4.165 Kovalenko V.P., P2.149 Kovalev V.F., P4.135 Koyama K., P1.148 Kozachok A., P1.088 Kozlová M., I2.025 *Kraemer M.*, P5.096 Kraev A.I., P1.151, P2.131 Králík M., P2.120 Kramer G.J., P1.090, P5.099, P5.100 Krämer-Flecken A., P2.016, P4.016 Krasa J., P1.126, P2.120, P4.123 Krasa V., P4.133 Krasheninnikov S.I, 15.075, P1.050, P4.058, P5.012 Krasilnikov A., O2.001 Kraus W., P1.103, P2.102 Krausz F., O4.039, P4.136, P4.143, P4.146 Kravarik J., 15.081, J., P2.120 Kravtsov D.E., P4.095 Krayev A.I., P2.136 Krikalev S.K., O2.007 Krikunov S.V., P1.080, P2.097, P2.103 Kritz A.H., P1.001 Kroesen G., I2.039 Krotov V.A., P2.149 Krousky E., I5.081, P1.117, P1.118, P1.126, P2.143 Krousky V., P4.133 Krstic P.S., P2.004

Kruger S.E., P2.059 Kruglvakov E.P., P1.112 Kruijt O.G., P1.081 Krupnik L., P1.088 Krushelnick K., O3.021, O4.040, P5.107, P5.108 *Krygina* A.S., P5.098 Ku S., P1.001, P5.029 Kubeš P., I5.081, P2.120 Kubo S., P4.101 Kubo-Irie M., P4.100, P5.082 Kubota S., P5.060 Kudel'kin V.B., P1.151, P2.136 Kudrin A.V., P4.192 Kudrvavtsev A.Y., O3.027 Kudryavtseva M.L., O3.027 Kudvakov T., P1.089 Kugel H.W., P1.009, P2.109 Kuhn S., P2.005 Kühner G., P2.113 Kuklin K.N., P4.103, P5.098 Kukushkin A.B., P1.016, P5.134 Kukushkin A.S., P1.013, P1.109, P4.079 Kulpin J.G., P2.110 Kumazawa R., P4.101 Kunin A.V., P2.149 Kuramitsu Y., I5.082, P2.187 Kuritsyn A., P2.017 Kurki-Suonio T., O4.036, P5.001, P5.069 Kurnaev V.A., P5.145 Kuroda H., O3.020 Kurskiev G.S., P1.109, P2.046, P2.097, P2.104, P2.108 Kurzan B., P2.001, P2.010, P4.002, P4.039 Kus A., P2.113 Kusama Y., P2.075 Kuschev S.A., P4.172 Kushner M., I1.013 Kuteev B.V., P2.069, P4.106, P4.166 Kutsyk I.M., O3.027, P4.181, P5.153 Kuznetsov A.P., P2.130 Kuznetsov P.G., P2.149 Kuznetsova I.V., P1.152 Kuzyayev A.I., P1.115, P1.116 Kwak J.G., P4.101 Kwon Jr.M., P1.090 Kvrie N.P., P2.188 Kyun Na H., P4.088 L'huillier A., P1.132 La Haye R.J., P2.059, P4.055, P4.056 Labate L., 05.061 Labaune C., O2.013, P1.119 Labaune Ch., I2.027 Labit B., I4.065, P1.184, P2.182 LaBombard B., O4.034, P1.005, P1.074 Laborde F., I4.061 Laborde L., I2.021, P1.038 Lackner K., I1.004, P1.101

Lackner L., P2.070 Lacroix D., P5.138 Ladygina M.S., P2.170 Lafortune K.N., P5.102 Lafuente A., P2.135 Lalescu C., P1.188 Lalousis P., P4.116 Lambert R., P1.058 Lamela H., P5.072 Lamers B., P1.081 Lancaster K.L., O5.061 Lancia L., I2.024, O4.042, P2.118, P5.113 Lancok A., P1.162 Lancok J., P5.142 Lanctot M.J., P4.055 Liu Y.O., P4.055 Lanctot M.J., P4.056 Land V., I2.032 Landen O.L., P2.127 Landman I., P4.014, P5.011, P5.057 Landreman M., P4.027 Lang P.T., P1.101, P1.109, P2.070 Langer B., O2.002, P2.083 Lashkul S.I., O4.046, P2.087, P4.043 Laska L., P4.123, P4.133 Lasnier C.J., P4.003 Latkowski J., D5.001 Lauber Ph., I1.004, O4.030 Lauro Taroni L., P2.026, D1.003 Laux M., P5.078 Lavender D., P4.131 Lavrichshev O.A., O2.018 *Layden B.*, O3.023 Layet J.M., P1.002 Lazarev V.B., P4.004, P5.004 Lazurenko A., P2.189 Lazzaro E., P4.025, P4.026, P5.046 Lebeaux D., I4.061 Lebedev S.V., P1.080, P2.093, P2.103 LeBlanc B.P., P1.009, P1.059, P1.108, P2.109, P5.022 Leboeuf J.N., P1.042 Lecherbourg L., I2.024 Leclert G., P4.021 Lee B.J., O3.024, P4.175 Lee H.J., P4.171 Lee K.W., P5.168 Lee M.J., P4.090, P4.091 Lee P., P2.148 Lee R.W., I2.025 Lee S.G., P1.084, P2.084, P4.087, P4.089, P4.096 Lee W.W., P5.023 Leekhaphan P., P4.015 Leemans W.P., P4.142 Leerink S., P4.045, P4.047, P5.015, P5.036 Lefebvre E., P4.141, P5.105, P5.112, P5.130 Lefrancois R.G., P4.187

Lehnen M., O4.052, P1.079, P1.089, P4.013, P4.016 Lei A., P5.111 Lei G.J., P5.086, D2.005 Leipold F., P1.034, P1.081, P2.086, P5.070, P5.077 Leitold G.O., P4.017, P5.021 Lejeune A., P1.186 Lemoine N., P2.189, P4.049, P4.189 Lemos N., P1.149, P2.150 Lennholm M., P1.058, D4.004 Leonard A.W., P2.024, P4.003 Leonov V.M., P2.077 Lepage C., P2.117 Lepreti F., P1.026 Leprovost N., O5.068 Lesnyakov G.G., P1.061 Letzring S., P4.130 Leuer J.A., P2.079 Leuterer F., P1.034 Levashov P.R., P4.156 Levashova M.G., P1.003, P1.004 Levato T., O5.061 Levinton F.M., P5.022, P5.060 Lévy A., I1.008 LHD Experimental Group, I2.022, P1.076, P4.101 Lho T., P4.091, P4.175 Li B., P5.086, D2.005 Li C.K., P2.127 Li J.G., P4.102, P5.024 Li Jinghong, D2.004 Li L., P5.086, D2.005 Li Ruxin, P1.121 Li S.W., P2.121 Li W., P5.026 Li Y., P5.024 Li Y.T., 15.082, P5.123, P5.124 Li Yunsheng, D2.001 Liang Y., P5.063 Liao H.L., P5.146 Lifschitz A., P5.130 Lilley M.K., P1.056, P2.055, P4.064 Lim J., P4.132 Limpouch J., I2.027, O2.013, P2.143, P4.128, P4.138, P4.149 Lin C.Y., P2.076 Lin L., P5.100 *Lin S.Y.*, P5.024 Lin T., P2.118 *Lin X.X.*, P5.123 Lin Y., P5.085 Lin Z., P5.028 Lindl J., D5.001 *Ling J.H.*, P4.102 Linhart V., P1.126 Liniers M., P1.094 Lipaev A.M., O2.007, P2.162, P5.139 Lipschultz B., P1.005 Lisak M., P2.078

Liseykina T., I3.047 Lisitsa V.S., P1.003, P1.004 Liska R., P2.143 Lisovskiv V., P4.176 Lister J.B., O2.004, P2.112, P4.060, P4.066 Litaudon X., O2.003, P5.034, P5.068 Litovko I., P2.156, P2.171, P2.172 Liu Adi, P2.014 Liu C.Y., P4.112 Liu D., P5.060 Liu F., P5.123 Liu F.K., P4.102 Liu H., P5.086, D2.005 Liu Jiansheng, P1.121 Liu N., P4.161 Liu Y., P1.048, P5.026, P5.101 Liu Y.Q., P2.067, P2.080, P4.056 Liu Yi, D5.003 Liu Zh.J., D2.003 Lizunov A.A., P1.098 Lloyd B., I2.020 Loarer T., P1.101 Loarte A., O4.033, P1.109 LoDestro L.L., P2.079 Loiseau P., I2.027, O2.013 Lomas P., O2.003, O2.006, P5.045 Lombard G., P5.088 Lönnroth J., O4.036, P5.001, P5.053 Lontano M., P4.025, P4.026 Lopes N., O4.040, P1.149, P4.153 Lopes-Cardozo N.J., P4.093 Lopez Bruna D., P2.113, P1.025, P2.030, P2.049, P5.018 Lorenzini R., O4.049, P2.054, P4.019, P4.074 Lotov K.V., P5.104 Lötstedt E., I3.049 Louche F., P4.107 Loupasakis I., P4.116 Loupias B., I3.054, P2.187 Loureiro N.F., P4.029 Lozin A.V., P1.061 Lu D.L., P5.086, D2.005 Lu Haiyang, P1.121 Lu W., P4.155 Lubashevsky I.A., P2.161 Luce J., I4.061 Luce T.C., I2.021, O2.006, P1.069, P2.073, P2.079, P4.055, P4.083 Luebcke A., 05.061 Luhmann N.C., P1.090 Lukash V.E., O2.004, P2.074, P4.066 Lukiachshenko V.G., P1.010 Lukianitsa A.A., P1.092 Lundberg D.P., P2.109 Lungu A.M., P1.168, P1.173, P4.113 Lungu C.M., P1.166, P1.168, P1.171, P1.172, P1.173 Lungu C.P., P2.002, P4.113

Lunt T., P5.002 Luo G.L., P4.102 Lupelli I., P1.175 Lütjens H., P2.052 Lutz O., I2.027 Lyachev A., P1.150 Lynch V.E., P2.058 Lyssoivan A., P1.104 Maaßberg H., P2.113 Mackinnon A.J., I4.060 Macor A., P4.062 Maddison G.P., O4.034, O4.054, P4.005 Magee R.M., P1.075 Maget P., P2.052, P4.062 Maggi C.F., P2.024, P2.071, P2.083, P4.011, P4.039, P4.041 Maggiora R., P2.105 Magne R., P1.058, D4.004 Mahdizadeh N., P4.028 Mailloux J., I2.021, O2.006 Maimone F., P1.174 Maingi R., P1.009, P2.013, P2.109 Maiorov S.A., P1.158, P2.161, P4.159, P4.160, P4.163, D1.001 Maire P.H., I2.027 Majeski R., P1.009 Major Zs., O4.039, P4.143, P4.146 Makowski M.A., P4.085, P5.099 Maksimchuk A., O3.021 Malaquias A., P2.040 Malara F., P1.039 Malinovskaya S.V., P2.175 Malinovski K., P5.075 Malizia A., P1.175 Malka G., P5.126 Malka V., P4.129, P4.132, P4.141, P5.119, P5.130 Mamyshev V.I., P1.115, P1.116 Mancic A., I2.024, O4.042, O4.043, D5.006 Mancuso A., I2.029 Manduchi G., P2.112 Mangeant M., I2.027 Mangeney A., P2.184 Mangles S.P.D., O3.021, O4.040, P4.144, P5.108, P5.116 Manickam J., P1.059, P5.044 Mansfield D., P1.009 Manso M.E., O4.032, P4.050 Mansur R.M., P4.171 Mantsinen M.-J., P1.055 Manuel M., P2.127 Maraschek M., O4.032, O4.030, P1.055, P1.101, P2.037, P2.070, P4.041, P4.082 Marchand R., P4.191 Marchenko A.K., P2.170 Marchetto C., P5.046 Marchiori G., P2.066, P2.067, P5.047, P5.065 Marchuk O., P4.092 Marcinkevicius A., P4.136 Marcus F.A., P1.024

Margarone D., P2.142, P2.144, P4.154, P4.170 Marian J., P2.135 Marinov P., P1.028 Marinucci M., P2.026, P2.106, P5.055 Märk T.D., P5.007 Markevtsev I.M., P1.151 Markey K., P1.131, P1.134, P5.103, P5.108, P5.116 Marklund M., I2.037, P2.123 Markov V., O3.026, P2.188 Markovets V.V., D1.001 Marksteiner O.R., P4.187 Marmande L., P2.117 Maron Y., 04.055 Marquès J.R., O3.021, O4.042, P2.118 Marr K., P1.005 Marrelli L., I1.017, O4.029, P2.054, P5.035, P5.047, P5.065, P5.097 Marsen S., P1.043 Marsh K., 04.040 Marshall F., P2.127 Martel P., O2.011, P2.147 Martellucci S., P1.170 Martens C., P2.102 Martens Ch., P1.103 Martin J.D., P5.152 Martin P., I1.010, I1.017 , P1.055, P4.059, P4.167, P5.042 Martin Ph., I1.008 Martin R., P4.064 Martin Y.R., 15.073, P1.072, P2.036, P4.060 Martinell J.J., P2.125 Martines E., I1.017, O4.029, O4.049, P2.135 Martín-Mayor V., P5.135 Martins J.L., P4.148 Martins S.F., P4.155 Martynenko S.P., P2.149 Martynov A.A., P1.072, P2.063, P2.069 Marusov N.L., P5.134 Maruta T., P4.044, P5.158 Maruvama S., P1.109 Marx B., P4.143, P4.146 Masamune S., P4.067, P4.068 Mascali D., P1.174, P2.142 Masek K., I5.081, P1.117, P1.118, P2.143 Mašek M., P5.129 Maslennikov D.D., P2.134 Massines F., P2.169 Masson-Laborde P.E., P5.107 MAST team, P1.007 Masuzaki S., P1.076, P2.048, P4.101, P5.003 Matafonov A.P., P1.120 Matsumoto T., P1.085 Matsuoka K., P1.056, P2.107 Mattei M., O2.003, P4.078 Matthews G.F., O4.033 Mattioli M., P2.026 Mavrin A.A., P5.037

Maximov V.V., P1.098 Maver M., P4.011 Mazataud E., P2.117 Maznichenko S.M., P1.061 Mazouffre S., P2.189 Mazzitelli G., P4.004 Mazzotta C., P2.026 Mc Carthy P.J., P2.071 McCarthy K., P2.113 McClements K.G., P4.037, P5.043, P5.052 McCone J.F.G., P2.088 McConville S.L., I3.053, P2.186, P4.179, P4.185 McCormick K., 04.033, P2.034 McCrorv R.L., I4.060 McCune D., P1.001 McDermott R., P1.005 McDevitt C.J., P5.016 McDonald D., I2.021, O2.006, P4.022 McKay R.J., P4.037 McKee G.R., O2.005, P5.099 McKenna P., P1.134, P5.103, P5.108, P5.109 McMillan B.F., P4.033, P1.019 McNeely P., P1.103, P2.102 Medina F., P2.030 Medlev S.S., P5.060 Medvedev S.Yu., P2.063, P1.072, P2.069 Mehdipoor M., P1.182 Méheut H., P4.190 Mehlmann F., P2.037 Meigs A., P4.018 Mekler K.I., P4.103, P5.098 Melekhov A.V., P1.142, P1.192 Melnik A.D., P1.080, P2.103 Melnikov A., P1.021, P1.088, P5.037 Menard J., I5.070, O2.006, P1.009, P1.059, P2.109, P5.022 Mendes A., P5.088 Mendonça J.T., I4.066, P5.141 Mendoza M.A., O2.011, P2.147 Meneghini O., P4.111 Meng L.G., P4.102 Meng L.M., P5.123 Menmuir S., P2.056 Meo F., P1.034, P2.086, P5.070, P5.077 Merdji H., P1.132 Merkel P., I1.004, P1.077, P4.061 Merola M., P1.013 Mertens Ph., O4.033 Mertens V., P2.070 Meshcheryakov A.I., P4.108, P5.071 Messerle V.E., O2.018, P1.010, P5.148 Messiaen A., P1.104, P4.107 Mesyats G.A., P4.012 Meyer C., I2.027, O2.013, P2.117 Meyer H., P1.073 Meyer O., P1.006 Meyer W.H., P2.079

Meyerhofer D.D., I4.060, P2.127 Meyer-ter-Vehn J., I5.078, O3.019, P1.133, P1.145, P1.146, P2.132, P4.136 Mezel C., P2.151, P5.150 *Miao W.Y.*, D2.003 Michaut C., I3.054 Michel D.T., I2.027, O2.013 Michelsen P.K., P1.034, P2.086, P5.070 Micozzi P., I2.029 Mier J.A., P4.020 Migliori S., P2.101 Mihaila I., P4.093 Mikhailov O.D., P1.151, P2.136 Miki M., P1.049 Mikic Z., 05.066 Mikikian M., I1.014, O3.023, P5.135 Mikkelsen D., P2.113 Milanesio D., P2.105, P5.088 Miles A.R., P5.102 Miller M., P2.017 Millon L., P5.088 Miloch W.J., P5.132 Mima K., I5.082, O4.038, O4.045, P4.120, P5.111, P5.121 Minaev V.B., P1.109, P2.046, P2.097, P2.104, P2.108 Minami T., P1.056, P2.113 Minardi S., P1.122, P2.148, P2.154 Minashin P.V., P1.016, P5.134 Mineev A.B., P2.074, P2.108, P5.067 Mingaleev A.R., P4.186 Mínguez E., O2.011, P2.147 Mintzev V.B., P2.145 Miguel J.L., 12.027 Miracoli R., P1.174, P2.142 Mirnov S.V., P5.004, P4.004 Mirnov V.V., P2.017 Mironov M.I., P1.109, P2.097 Miroshnikov I., P4.106 Mirza A., P5.064 Mishra L.N., P1.191 Misina M., P5.142 Mito T., O4.038 Mitri M., O4.052, P4.013, P4.016 Miura E., P1.148 Miyamoto S., P2.075 Miyanaga N., O4.038 Mivata Y., P1.085 Miyazawa J., P1.076 Mizhiritsky V., P2.137 Mizuguchi M., P1.085 Mizuno N., P4.157 Mizuuchi T., P2.113 Mlynar J., P4.084 Mocek T., I2.025, P1.132 Modestov M., P2.123 Moiseenko A.N., P1.151, Moiseenko V.E., P1.061, P2.114, P4.184

Mok Y.S., P4.171 Mokhov V.N., P1.115, P1.116 Molaii M., P1.086 Molchanov P., P4.035 *Molina D.*, P1.058 Mollard P., P5.088 Moller A., P4.167 Molodtsov N.A., P1.083 Molotkov V.I., O2.007, P2.162, P5.139 Mondio G., P4.170 Monot P., I1.008, I1.010 Montagna C., P2.178 Montant S., I4.061 Monteil M.C., I2.027, O2.010 Monticello D., P2.013 Moon M.K., P2.084, P4.087, P4.089 Moon S.J., 12.025 Moore A., P4.131 Mora P., P4.139 Morace A., O5.061, P5.123, P5.126 Moradi S., P4.048, P5.027 Moraru A., P4.069 Mordovanakis A.G., P5.107 Moreau P., P1.058 Moreau Ph., P2.052 Morel P., P1.040, P1.041, P4.038 Moreno-Insertis F., I5.074 Morfill G.E., I5.079, I5.080, O2.007, O2.009, P1.154, P1.155, P2.159, P2.162, P5.136, P5.139, P5.140 Mori W.B., O3.021, P4.155 Morice O., P2.153 Morikawa J., P4.109 Morisaki T., P1.076, P2.048, P2.061, P5.003 Morita S., P1.054, P1.105, P2.061, P2.082 Morize C., P1.020 Morlens A.S., P1.132 Morozov A.E., P4.108 Morozov D.Kh., P5.067 Morozov I.V., P1.151, P2.131, P2.136, P5.006 Moskalenko I.V., P1.083 Moslem W.M., P5.160 Mota F., P2.135 Motojima O., I2.022, O4.038, P1.076, P4.101, P5.003 Moudden M.El., P1.046 Mourou G., P1.119, P5.107 Moustaizis S.D., 04.041, P1.123, P4.116 Moyer R.A., P2.003, P2.009, P4.098 *Mozeti M.*, P1.166 Mozetic M., P1.014 Mueller D., P1.009, P4.076 Mueller M., I1.012 Muir D., P2.088 Mukhin E.E., P2.104, P2.108 Mulas R., P4.147 Mulec M., P5.009 Müller H.W., P2.010, P2.019, P2.037, P4.003

Müller S., I4.065, P1.184, Mulser P., P5.127 Muraglia M., O4.028 Murakami M., O2.006, O4.038, P2.073 Murakami S., P2.113 Murakhtin S.V., P1.098 Murari A., I4.059, I5.073, P4.084 Murata K., P4.067, P4.068 Murmann H., P4.002 Murtaza G., P5.167 Murugov V.M., P2.149 Musil J., P5.142 Mustata I., P1.168, P1.169, P1.171 Mutoh T., P4.101 Muxlow T.W.B., P2.186 Mvatt J., I4.060 Myers S., 13.054 Myra J.R., P4.001 Na Y.-S., P5.025 Nagai K., O4.038, P5.111 Nagaoka K., P1.054, P1.056 Nagashima Y., P4.044, P5.158 Nagatomo H., O4.038, O4.045, P4.120, P5.121 Nagatomo K., P5.111 Nagel S.R., O3.021, O4.040, P4.144, P5.108, P5.116 Nagy K., P5.079 Najmu Z., O3.021 Najmudin Z., O4.040, P4.144, P5.108, P5.116 Nakada M., P1.085 Nakai M., 04.038 Nakajima N., P2.113 Nakamura T., O4.038, P4.120, P5.121, P5.126 Nakamura Y., P2.075, P4.042, P4.101 Nakao Y., O4.038, O4.045 Nakatsutsumi M., P2.118 Nakonechny G.V., P4.172 Nam U.W., P2.084, P4.087, P4.089 Nanobashvili S., P2.096 Nardon E., 04.035 Narihara K., P1.054, P2.061 Narushima Y., I2.022, P1.054, P2.061 Naudé N., P2.169 Naudy M., 12.027 Naulin V., I2.023, P2.025, P2.037 Naumova N., P1.119 Nave F., P4.115 Navratil G.A., P4.055, P4.056 Nazarov W., I2.027, O2.013, O4.040, P2.143 Nazikian R., P5.099 Néauport J., I4.061 Nedzelskij I., P1.021 Neely D., P1.131, P1.134, P5.103, P5.108 Nees J., P5.107 Negishi S., P1.085 Negutu C., P5.144 Nehme H., O4.054, P1.109, P4.099, P4.104

Nejoh Y., P4.157 Nekhaevsky Yu.Yu., P5.137 Nelson B.A., P4.076 Nemov V.V., P5.021 Neu R., P4.011, P4.039 Neubauer O., P4.075 Neudatchin S.V., P5.038 Neumann H., P2.164 Neverov V.S., P1.016, P5.134 Newman D.L., O4.058 Newman D.E., P1.042, P2.029, P4.020 Newton A.P., P1.023 Newton S.L., P4.054 Nguyen C., P4.062 Nguyen-Tran Th., I3.052 Ni Guoquan, P1.121 Nickles P.V., P4.145 Nicolaï P., I2.027, O2.013 Nicolaï Ph.X., I5.081 Nielsen A.H., I2.023, P2.037 Nielsen S.K., P1.034, P5.070, P5.077 Nilson P.M., I4.060, O3.021, O4.040 Nish K., 04.038 Nishijima D., P2.004 Nishijima T., P5.158 Nishimura H., I5.082, P5.126 Nishimura S., P1.056, P2.107, P5.059 Nishimura Y., P5.028 Nkonga B., P2.065 Noack K., P2.114 Noailles S., I4.061 Nold B., P2.019 Nomura G., P4.101 Nomura Y., P1.131, P1.134, P1.145 Nonn P.D., P2.110 Nora M., P4.045, P4.047, P5.015, P5.036 Norberg C., I2.036 Nordman H., P2.042, P4.036, P4.048 Norreys P.A., I4.060, I5.077, O5.061, P1.128, P5.103, P5.108 Nosenko V., I5.080 Nosov S.V., P1.092 Noterdaeme J.-M., P4.041, P5.005 Notimasu T., P5.111 Notley M.M., I3.054, P5.113 Noto M., P1.085 Novello L., P5.065 Novikov V.G., P1.125 Novotny M., P5.142 Novozhilov Yu.B., P2.130 Nowak S., P2.026, P5.046, P5.074 NSTX Research Team, I5.070, P2.109 Nuernberg F., P4.127 Nunes I., 15.073, O2.003, O4.034 Nürnberg F., P4.119, P4.122, P4.142 Nuter R., P4.141 O' Connell R., P1.075

O' Mullane M., D1.003 Ockenga T., P2.165 Oehr C., I1.012 Ogando F., P4.045, P4.047, P5.015, P5.036 Ogawa Y., P4.109 Oh K.S., O3.024 Ohdachi S., I2.022, P1.054, P2.061 Ohl A., P4.173 Ohno N., P2.048, P2.095 Ohyabu N., P1.076 Oikawa T., P5.087 Okabayashi M., P4.055, P4.056 Okamoto M., P2.095 Okamura S., P1.056, P2.107, P2.113 Okano Y., P5.126 Oki K., P4.067, P4.068 Olazabal-Loumé M., O5.060, P2.124, P2.126 Oldenbürger S., P2.189, P4.049 Oliva E., O5.062, P1.117, P1.132, P1.141 Oliva S.P., P2.110 Olofsson K.E.J., P1.071, P2.056 Onchi T., P4.067, P4.068 Oncioiu G., P1.166 Ongena J., P1.106, P4.115 Onjun O., P4.015, P4.030 Onjun T., P4.015, P4.030 Ono M., P1.009 Onofrei R., P1.149 Onofri M., P1.039 Oohara W., P5.147 Oono Y., P1.085 Oosterbeek J.W., P1.081, P5.077 Opaleva G.P., P1.061 Oreshko A.G., D5.005 Orlovskiv I.I., P1.068 Orozco R.O., 04.048 Orsitto F., O2.006 Ortiz C., P2.135 Osadchaya E.F., O2.018 Osakabe M., P1.054 Osborne T.H., P4.003 Osmanov Z., P1.179 Osterhoff J., O4.039, P4.143, P4.146 Otroschenko V., P1.008 Ottaviani M., I2.023 Otte M., P1.043, P1.088, P2.051, P5.078 Ova A., I3.054 Ozaki T., O3.020 Ozhereliev F.I., P1.061 Paccagnella R., P2.067, P4.074, P5.065, P5.095 Pacella D., O4.050 Pacher G.W., P1.013, P4.079 Pacher H.D., P1.013, P4.079 Paganucci F., I1.017 Pagonakis I.Gr., P4.105 Pais V., P1.124, P5.144

Pak S.V., P1.151, P2.136 Pakzad Hamid Reza, D2.006, D4.002 Pal' A.F., P5.171 Pálfalvi J., P5.079 Palmer C., P5.108, P5.116 Pamela S., P2.065 Pan C.H., D5.003 Pan Y.D., P2.076 Panasenkov A.A., P1.109 Pancheshnyi S., P2.169 Pandey B.P., P1.156, P1.163 Pánek R., P2.098 Panis T., P1.067 Pankin A.Y., O5.066, P1.001 Papadogiannis N.A., P1.122, P2.148, P2.154 Papp G., P2.034 Parail V., O2.003, O4.036, P5.001, P5.029, P5.034, P5.053 Parisot T., O4.050 Park B.H., P5.091 Park G.Y., P1.001, P5.029 Park H.K., P1.090 Park J.-K., 15.070 Park Y.C., 03.024 Parker R.R., P4.111 Parks P.B., P2.003, P4.098 Parra F., P4.034 Parys P., O4.043, P1.127, P4.123 Pascal J.-Y., P1.006 Pasch E., P5.078 Pashnev V.K., P1.061 Pasko V., I5.069, P4.161 Pasley J., P5.110 Pasqualotto R., O4.034, P2.054, P4.005, P4.019, P5.073, P5.097 Passarelli M., P1.014 Passas M., P2.033 Pastukhov V.P., P1.044 Patrov M.I., P1.109, P2.046, P2.108 Paul S., P1.009 Paulicelli E., P4.073 Pautasso G., P2.007 Pavlenko V.P., P5.041 Pavlov A.V., P4.172 Pavlovskiy E.S., P1.115 Pázmándi T., P5.079 Peano F., I4.067, P4.147, P4.148 Pearlstien L.D., P2.079 Pécseli H.L., P5.132 Pedreira P., P5.072 Pedrick L., P4.113 Pedrosa M.A., O4.048, P1.021, P2.021, P2.028 Peeters A.G., O4.047, P2.032 Peeters Ph., P2.038 Pegoraro F., P1.051, P1.176, P1.180, P2.176, P2.178, P2.179, P2.184 Pégourié B., O4.054, P1.109, P4.099, P4.104 Peksa L., P1.162

Peláez R.J., P2.094 Pelka A., P4.122 Peng Y., P5.138 Peng Y.K.M., P5.048 Pereverzev G., P2.112, P5.027, P5.032 Perez F., O5.061, P5.109, P5.112 Perez-Luna J., P5.151 Perfilov S., P1.088 Pericoli V., P2.026 Pericoli-Ridolfini V., I2.021, O2.006, P2.106 Perkins L.J., P5.102 Perlado J.M., P2.135 Perona A., P5.054 Perri S., O4.057, P5.170 Persson A., P4.134 Persson M., P4.024 Peskov V.V., P5.145 Pesme D., O2.013, P2.140 Pestchanyi S., P4.014 Petrasso R.D., I4.060, P2.127 Petravich G., P5.076 Petrenko M.V., P1.152 Petridis C., P1.122, P2.148, P2.154 Petrie T.W., P2.073 Petrov A.V., P2.093 Petrov O.F., I2.033, P1.160, P1.161, P1.187, P2.162, P4.158, P5.137, P5.162, P5.171, D1.001 Petrov S.L. P2.149 Petrov Yu.V., P1.109, P2.046, P2.097, P2.104, P2.108, P2.170 Petrukhin A.A., P1.115, P1.116, P2.131 Petrzilka V., P1.106 Petty C.C., O2.005, P2.024, P2.073, P4.083, P5.022 Peyrusse O., I2.027, P1.135 Peysson Y., I3.046, P1.099, P2.098, P2.112, P5.027 Pfeifer M., I5.081, P1.117, P1.118, P4.133 Pfotenhauer S., P4.137 Phelps A.D.R., I3.053, P2.186, P4.179, P4.185 *Philippe F.*, I2.027, P2.122 Philipps V., O4.033 Phillips C.K., P1.108, P2.099, P4.114 Piccolo F., P5.045 Picha R., P4.015, P4.030, P4.040 Piel A., 11.003 Pierre Th., P1.046, P4.046, P5.169 Pigarov A.Yu., P2.004 Pikuz S.A., P2.137, P4.186 Pinches S.D., I2.018, O4.034, P1.055, P2.018, P2.055, P4.064 Pinegin A.V., P2.149 Pinsker R.I., P4.097 Pinzhenin E.I., P1.098 Piovesan P., O4.029, P1.055, P5.047, P5.065 *Pipahl C.A.*, P5.113 Piron R., P2.122 Pironti A., P2.080

Pisarczyk P., P1.117, P1.118 Pisarczvk T., I5.081, P1.117, P1.118 Pisarev V.A., P4.086, P4.189 Pisokas Th., P2.041 Pitts R.A., 04.033, P4.005 Pizzicaroli G., P4.073 Platania P., P5.074 Platonov K.Yu., P4.128 Ploumistakis I., O4.041, P1.1 23 Plyushchev G., P1.184 Plyusnin V.V., P5.075 Poberaj I., P1.014 Pochelon A., P1.072, P1.099, P2.020 Podestà M., I4.065, P1.184, P2.182, P5.060 Podoba Y., P1.088 Podpaly Y., I4.058 Poedts S., P4.178, P5.040, P5.061 Pokol G., P2.034, P2.078 Pokorny P., P5.142 Polan J., I2.025 Polevoi A.R., P1.109 Poli E., P5.095 Poli F.M., P1.052, P1.184, P4.071 Politzer P.A., P2.073 Polomarov O.V., O4.044 Polosatkin S.V., P4.103, P5.098 *Polster R.*, P4.145 Poltierova J., P1.162 Polyushko S.M., P2.136 Polz J., P4.137 Pomaro N., P5.073 Pomphrey N., P5.050, P5.058 Ponomarenko A.G., P1.142, P1.192 Poolyarat N., P4.015, P4.030 Popa G., P4.093 Popov A.M., P1.063, P1.096, P2.069P2.089 Popov A.Yu., P4.043 Popov K. I., P4.121, P4.135 Popov S.D., P4.172 Popov S.S., P4.103, P5.098 Popov Tsv.K., P4.081 Popova E.V., P5.080 Popova L., P1.028 Popovichev S., P4.084 Popp A., P4.143, P4.146 Por G., P5.079 Porfiri M.T., P1.175 Porkolab M., P4.111, P5.085, P5.100 Porosnicu C., P1.168, P1.171 Porte L., P2.036 Porter G.D., P4.003 Portone A., O2.003, P2.080, P4.078 Poshekhonov Yu.Yu., P1.072 Pospieszczyk A., P5.078 Postupaev V.V., P4.103, P5.098 Posukh V.G., P1.142, P1.192

Potapenko I.F., P5.012 Prager S.C., P1.075, P2.017, P2.110 Preinhaelter J., P2.096 Pretty D., P2.113 Preuss R., P2.113 Price M., 04.054 Prikhodko V.V., P1.098 Primavera L., P1.039 Promping J., P4.030 Pronin O.V., P2.130 Przybysz W.S., P1.165 Pshenov A.A., P5.067 Psikal J., P4.138, P4.149 *Psimopoulos M.*, O4.056, P1.122 Puerta J., P4.059, P4.167 Pueschel M.J., I2.023, P1.038 Puetterich T., P4.011 Pugno R., P2.010, P4.011, P4.039 Puiatti M.E., P2.026, P4.019, P4.074 Pukhov A., I1.011 Punjabi A., P1.012, P2.008 Puscas N.N., P5.144 Pustovitov V.D., P1.060, P2.069 Pusztai I., P1.032 Pütterich T., P2.083, P4.039 Qian J., P2.014 Qin Y.L., P4.102 Qotb K., P1.046 Quade A., P4.173 Quéré F., I1.010 Quinn K., P5.113 Quinn M., P5.109 Quotb K., P4.046 Rabec le Gloahec M., P1.140, P2.128, P5.109 Rabinski M., P5.075 Raffestin D., I2.027, P2.117 Rafig T., P1.001, P4.024 Raitses Y., P5.149 Ram A.K., O4.051, O4.059, P1.097, P1.099, P2.185 Ramahkrishna B., P5.113 Raman R., P1.009, P2.109, P4.076 Rambo P., P4.127 Ramet P., P2.065 Ramis R., 02.015 Ramisch M., P2.019, P4.028, P4.110 Ramogida G., P4.073 Rantamaki K., P2.035 Rao J., P5.086, D2.005 Rapp J., O4.033, P4.093 Rasmussen J.J., P2.037 Rassuchine J., P4.119 Rasul B., P5.007 Ratynskaia S., I4.063 Raupp G., P4.082 Razavi M., P1.086 Razumenko D.V., P1.080, P2.103

Réau F., I1.008 Rebont C., P4.046, P5.169 Rebusco P., P5.154 Rechatin C., P4.132, P5.130 Recsei S., P5.078 Redaelli R., P5.123, P5.126 Reed S., O3.021 Reich M., P4.082 Reimerdes H., P4.055, P4.056, P5.022 Reinke M., P1.005, P1.084 Reiser D., I2.023, O4.052, P2.016, P2.031 Reiter D., O4.052, P1.013, P1.079, P2.009, P2.085, P4.009, P4.092 Reitsma A., P1.144, P4.151 Reitsma A.J.W., P1.148 *Remacle V.*, P1.188 Renaudin P., I2.024, P1.135 Renner O., P1.126, P2.129, P2.143 Repa P., P1.162 Reshko M., P4.029 Reusch J.A., P1.075 Reverdin C., I2.027 Rewoldt G., P5.016, P5.023 Reynolds J.M., P2.049 Rezaei-Nasirabad R., P4.140 *RFX team*. I3.045 Riazuelo G., O2.013, P2.140 Ribeiro T., I2.023, P5.039 Ribeyre X., I5.081, O5.060, P2.124, P2.126, P4.118 Riccardi C., P2.027 Ricci P., P1.184, P2.182 Rice J.E., I4.058, P1.074, P1.084, P4.111 Richert T., P5.081 Richetta M., P1.170, P1.175 Riconda C., O2.013, O4.042 Riedl R., P1.103, P2.102 Rimini F., O2.006, P1.058 Roach C.M., P4.029 Robertson C.W., I3.053, P2.186 Robiche J., I2.024, D5.006 Robinson A., I5.077 Robinson A.P.L., P5.103 Roca P., I3.052 Roccella M., O4.036, P5.001 Rodionov N., P1.008 Rodionova V., P1.008 Rodrigues P., P4.063, P4.065 Rodriguez J., P4.190 Rodríguez R., O2.011, P2.147 Rodríguez-Barquero L., P1.094 Rohde V., P2.010, P2.019, P2.037, P4.011 Rohlena K., I5.081, P1.117, P1.118, P4.133, P5.129 Romagnani L., P2.118, P5.113 Romanelli M., I2.023, P2.026, P2.112, P5.027 Romano A., P2.026 Romanova V., P2.137, P4.186

Romary Ph., I2.027 Ronald K., I3.053, P2.186, P4.179, P4.185 Ronneberger F., P4.137 Roquemore A.L., P1.009, P2.109 Rogues A., I4.061 Ros D., P1.132 Rosato J., P1.004 Rosch R., 12.027 Rose S., P4.124, P5.118 Rosinski M., O4.043, P1.127, P4.123 *Rosmej F.B.*, P1.004 Ross P.W., P1.009 Rossetti P., I1.017 Roth M., P4.119, P4.122, P4.127, P4.142 Rothermel H., O2.007 Rott M., P4.075 Rouak A., P1.046 Rousse A., I1.011, O3.021 Rousseaux C., I2.027, P5.109 Rouyer C., I4.061 Rovenskikh A.F., P4.103, P5.098 Roveta G., P2.101 Rowlands G., P4.182 Rowlands Rees T.P., P4.143, P4.146 Rozhansky V., P4.035, P5.020 Rozhansky V.A., P1.109, P2.046, P2.108 Rozhdestvensky V.V., P1.080, P2.103 Rozmus W., P4.121, P4.135, P5.107 Rubel M., P4.113 Rubiano J.G., O2.011, P2.147 Rubinacci G., P2.067, P2.080 Rubinacci R., P4.073 Rubinstein B., O4.055 Rubin-Zuzic M., O2.007, P2.159, P5.139 Rudakov D., I4.063, P2.003 Ruhl H., P5.127 Rullier J.L., P2.117 Rullière C., I4.061 Rus B., I2.025, P1.132 Rushkevich A.A., P1.080 Russo C., P4.153 Rutberg Ph.G., P4.172 Ryan P.M., P1.108, P4.097 Ryc L., P4.123 Rygg J.R., P2.127 Rykovanov S.G., O3.019, O4.039, P1.131, P1.134, P4.143, P1.145 Rvokai T., P5.003 Rvpdal K., P1.037 Ryter F., I2.021, P4.039 RyulHuh S., P4.174 Ryzhkov S., P1.114 Saarelma S., I2.020, P4.005 Sabbagh S.A., I5.070, P1.009, P1.059, P5.022 Sabot R., P1.017, P1.022, P4.062 Sadovski A., P2.173

Sadowski M.J., P5.075 Saevert A., P5.108 Saibene G., O2.003, O2.006, O4.036, P1.101, P4.078, P5.001 Saifaoui D., P1.046 Saito K., P4.101 Saito N., P1.148 Saitou Y., P5.133 Sakagami H., O4.045, P4.120, P5.121 Sakakibara S., I2.022, P1.054, P2.061, P2.113 Sakamoto R., I2.022, P1.076, P5.017 Sakata D., P4.109 Sakawa Y., I3.054, I5.082, P2.187 Sakharov N.V., P1.109, P2.046, P2.097, P2.104, P2.108 Saleem H., P5.061 Salem M.K., P1.070 Salewski M., P1.034, P2.086, P5.070, P5.077 Salmi A., O4.036, P5.001, P5.029 Salomaa R., P5.069 Samaddar D., P2.029 Samaras T., P5.089 Samarian A.A., O3.023, O2.016, P1.156, P1.157, P1.163, P2.157, P5.135 Samm U., O4.052, P4.016 Sánchez Burillo G., P2.039 Sánchez J., P5.072 Sánchez M., P5.072 Sanchez R.A., P1.031, P1.042, P2.029, P2.043, P2.058, P4.020 Sandberg I., P1.027, P2.045 Sandner W., P4.145 Sangster T.C., I4.060 Sano F., P2.113 Sanpei A., P4.067, P4.068 Santos J.E., P1.130, P5.126 Santos J.J., P5.109 Sanz J., P2.124, P2.126, P5.122 Sarakovskis A., P2.011 Sarazin Y., P1.017, P1.020, P4.033, P5.008 Sardei F., P2.013, P2.085, P2.113 Sarff J.S., P1.075, P2.017 Sarichev D.V., P5.080 Sárközi J., P5.076 Sarris I.E., P2.044 Sartori F., P5.045 Sartori R., 15.073, O2.003 Sasao M., O2.001 Sasorov P.V., P2.130 Sassenberg K., P1.055 Sataline C., P1.183 Sato K., P4.106 Sato M., P2.092 Sattin F., I2.034, P5.035 Saut O., P2.151 Sautarel F., I4.061 Sauter O., I5.072, P1.072, P2.020, P2.036 Sauteret C., I4.061 Sautet M., I4.061
Sautivet A.M., P2.128 Saveliev A.N., P5.092 Sävert A., P5.116 Savin S.M., P2.130 Savkin V.Ya., P1.098 Savrukhin P.V., P5.080 Scannel R., O4.054 Scarabosio A., P2.001 Scarin P., I1.017, O4.049, P4.074 Schäfer J., P4.173 Schaffer M.J., 15.070, O4.035 Schaumann G., P4.122 Scheffel J., P5.064 Scheier P., P5.007 Schekochihin A., I2.035 Schiavi A., P4.126, P5.106 Schiesko L., P1.002 Schlegel T., P1.119 Schlickeiser R., P2.174 Schlossberg D.J., O2.005 Schmid K., P4.136, P4.146 Schmidt A.E., P4.111 Schmidt H., P2.120 Schmitt S., I2.027 Schmitz O., I3.043, O4.052, P1.104, P2.009, P4.013, P4.016 Schnack D.D., O5.066 Schneider H., P1.009 Schneider M., I3.046 Schneider V., P2.164 Schneider W., P5.078, P5.081 Schnürer M., P4.145 Schoepf K., P1.087 Schökel A., P4.122 Schollmeier M., P4.119, P4.122, P4.127, P4.142 Scholz M., P2.120 Scholze F., P2.164 Schram P.P.J.M., P1.158 Schramm U., P4.136, P4.143, P4.146 Schreiber J., O3.019, O4.039, P1.145, P4.127, P4.130, P5.108, P5.116 Schrittwieser R., P2.025, P2.037, P2.177, P4.093 Schubert G., P4.156 Schubert M., P1.088, P1.096 Schuhmacher D., P4.122 Schurtz G., I2.027, I5.081, P4.118 Schüttrumpf J., P4.122, P4.127 Schwabe M., P5.139 Schwander F., P5.008, P5.043 Schwarz J., P4.127 Schweer B., P4.016, P5.076, P5.078 Scime E.E., P1.166, P5.143 Scott B.D., I2.023, P1.018, P5.030, P5.031, P5.039 Scott S.D., P1.084, P4.111 Sebban S., P1.132 Sedighi-Bonabi R., P4.140 Seemann K., P1.162

Sefkow A.B., P2.139 Ségui J.L., P1.006, P1.058, P2.052, P4.062, D4.004 Séguin F.H., P2.127 Ségur P., P2.169 Seidel U., P4.075 Seki T., P4.101 Sekine K., P4.157 Selemir D., P2.158 Semenov V.V., P2.108 Sempf M., P1.077 Sen A., P1.066 Sengupta A., P2.051 Senichenkov I.Yu., P1.109, P2.046, P2.108 Senik A.V., P2.149 Senties J.M., P2.033 Sentoku Y., O4.045, P4.119, P5.117 Seol JaeChun, P1.100 Sepehri Javan N., P1.136, P5.163, P5.164 Serafino T., P4.170 Serban G., P4.113 Sergeev V.Yu., P4.106 Sergeev Yu.F., P1.061 Sergienko G., O4.033 Serianni G., I1.017, O4.049, P5.073 Serra F., 04.032 Serre E., P5.008 Shah H.A., P5.167 Shah R., I1.011, P4.130 Shaidulin V.Sh., P1.115 Shaikhislamov I.F., P1.142, P1.192, P4.177 Shakhalkin A.T., P2.136 Shan J.F., P4.102 Shapoval A.N., P1.061 Sharapov S.E., O2.006, P1.052, P1.056, P1.087, P1.093, P2.055, P4.054. P4.064. P4.071 Sharkov B.Yu., O2.012, P2.130, P2.145 Sharov I. A., P4.106 Shatalin S.V., P2.087, P4.043 Shcheglov D.A., P1.083 Shcherbakov A.A., P4.160, P4.163 Shcherbinin O.N., P2.097 Shelkovenko T.A., P2.137, P4.186 Shen B., P4.102 Sheng Z.M., P5.123, P5.124 Shepherd R., I2.024 Sherlock M., I5.077, P4.124 Shibata Y., P2.095 Shima Y., P1.085 Shimada T., P4.119, P4.130 Shimazu H., P4.067, P4.068 Shimizu A., P1.054, P1.056 Shimozuma T., P2.113, P4.101 Shimpo F., P4.101 Shinohara S., P4.044, P5.158 Shipuk I., P1.008 Shiraiwa S., P4.111

Shoji T., P2.107 Shoshin A.A., P4.103, P5.098 Shoucri M., P4.006, P4.152, P5.128 Shu H., D5.004 Shukla P.K., I4.066, O5.067, P4.165, P4.182 Shumikhin S., P1.185 Shurvgin R.V., P5.037 Shustin E.G., P5.145 Shuvaev D.A., P1.083 Shvarts D., P2.127 Shvedov A.A., P2.134 Shvets G., 04.044 Shvets O.M., P1.061 Shyshkin O.A., P4.031 Sid A., P4.117 Signori M., I1.017 Silva A., 04.032 Silva C., O4.048, P1.021, P2.025, P2.040, P5.075 Silva L.O., I2.036, I4.066, P1.128, P1.130, P1.149, P2.141, P4.143, P4.147, P4.148, P4.150, P4.155, P4.180, P5.120 Simakov A.N., P4.034 Simonchik L.V., P4.188 Simonetto A., P5.074 Simpson P., P5.108, P5.116 Singh R., P2.042, P4.048 Singleton R., I2.026 Sinitsky S.L., P4.103, P5.098 Sinor M., P2.143 Sipilä S., O4.036, P5.001, P5.069 Sips A.A., P4.078 Sips A.C.C., O2.003, P2.024, P4.082, P5.034 Skala J., I5.081, P1.117, P1.118 Skalny J.D., P5.007 Skinner C.H., P1.009 Skobelev A.N., P2.136 Skoulakis A., P1.122, P2.154 Smadi M., P4.117 Smalyuk V.A., P2.127 Smeulders P., O2.006, P1.069 Smirnov A.I., P1.080 Smirnov G.N., P2.145 Smirnov V., P2.137 Smith H., P2.078, P4.077 Smith H.M., P1.030, P1.057, P2.055 Smolvakov A.I., P1.053, P1.050, P5.149 Snipes J.A., 04.034, P1.067, P1.074, P5.083 Snyder P.B., P2.071 Soboleva T.K., P5.012 Sobur D.A., P2.130 Sokolov I.V., P1.119 Solano E.R., P2.035, P4.070 Soldatkina E.I., P1.098 Soldatov S., P2.016 Solodov A.A., I4.060 Solomakhin A.L., P1.098

Solomon M.L., P4.093 Solomon W.M., P4.056, P5.022, P5.099 Solomyannaya A.D., P1.125 Solyakov D.G., P2.170 Sonato P., P4.070, D1.002 Song S., P1.058 Song S.D., D4.004 Song X.M., D5.003 Sonnino G., P2.038 Soppelsa A., P2.066, P2.067, P5.047, P5.065 Sordo F., P2.135 Sorokin A.E., O3.022 Sorokina N.V., P4.103, P5.098 Sorriso-Valvo L., O4.057 Sotnikov S., P1.008 Soukhanovskii V.A., P1.009, P2.109 Soullié G., I2.027 Sozzi C., P5.074 Spatschek K.H., I3.041 Speirs D.C., I3.053, P2.186, P4.179, P4.185 Speth E., P1.103, P2.102 Spizzo G., I1.017, O4.049, P4.074 Spolaore M., O4.029, O4.049, P1.026, P5.073 Spong D., P5.028 Stäbler A., P1.103 Staebler G.M., O4.053 Stafe M., P5.144 Stahl M., P4.168 Stamm R., P1.004 Stamp M., 04.033 Stamper R., I2.036 Stancalie V., P1.124, P5.144 Stancu C., P1.166, P2.167 Stanglmaier S., O4.039 Stankiewicz, R., P5.027 Starostin A.N., P5.171 Startsev E.A., P2.139 Starz R., P4.093 Steinberg V., I5.079 Steinhauer L.C., P5.048 Stenz C., I5.081, O2.013 Stenz, Ch., 12.027 Stenzel R., P2.177 Stepanov A.Yu., O4.046 Stepanova Z.A., P1.152 Stephens H.D., P1.075 Stephens R.B., I4.060, P5.114 Sternberg N., P1.183 Stevenson T., P1.009 Stober J., P1.034, P4.082 Stöckel J., P2.098, P4.081 Stockem A., P2.174 Stoeckl C., I4.060, P2.127 Stoican O.S., P4.169 Stokes J.D.E., P2.157 Storm E., D4.001, D5.001

Storm M., I4.060 Stotler D.P., P2.109 Strachan J., D1.003 Strait E.J., P2.003, P4.055, P4.056, P5.022, P5.099 Strand P., P2.042, P2.112, P4.036, P5.027 Stránský M., P2.098 Strege C., P4.094 Streibl B., P4.075 Strintzi D., O4.047, P2.032 Stroth U., P2.019, P2.113, P4.028, P4.110 Strozzi D.J., P2.138 Strumberger E., I1.004, P1.077 Stupka M., 12.025 Stutman D., P2.081 Suárez D., O2.011, P2.147 Suchkov E.P., P1.091 Sudo S., P4.106 Suetterlin R.K., O2.007 Sugihara M., P1.109 Sukboon D., P4.015 Sulyaev Yu.S., P4.103, P5.098 Summers H.P., D1.003 Sun H.J., D5.003 Sun P., P5.026 Sun Y.W., P4.102 Sunn Pedersen T., P4.187 Surdubob C.C., P1.172 Surdu-Bob C., P1.171 Surov A.V., P4.172 Sushkov A.V., P4.095 Suslov N.A., P2.149 Suttrop W., P4.002, P4.010, P4.075, P4.082 Suwanna S., P4.015, P4.030 Suzuki C., P1.056, P2.061, P2.107 Suzuki M., O3.020 Suzuki Y., I2.022, P2.113 Svensson J., P5.078 Sydora R.D., P4.121, P4.135 Svdorenko D., P5.149 Sylla F., P4.129 Szabó V., P5.078 Szappanos A., P5.079 Szatmári S., O2.014 Szepesi T., P1.101, P2.070 Szerypo J., O4.039 Szydlowski A., O4.043 Ta Phuoc K., I1.011, O3.021, P4.132 Tabak M., I5.068, D5.001 Tabares F., 15.071 Tachaev G.V., P2.149 TaekLim S., P4.174 Tagger M., P4.190 Taguchi M., P4.183 Takabe H., I5.082, P2.187 Takahashi C., P4.101 Takahashi H., P4.055, P4.058, P4.101

Takahashi R., P2.060 Takei N., P2.075 Takeiri Y., P2.113 Takeuchi M., P2.107 Tala T., P2.035, P4.018, P4.022, P5.069 Tale I., P2.011 Tallents S., I2.020, P4.035 Talmadge J., P2.113 Tamain P., P1.020, P4.107 Tamas M., P1.143 Tampo M., P5.113 Tamura N., P4.106, P5.017 Tanaka K., I2.022, P1.054, P2.061, P5.017, P5.111 Tanaka S., P4.109 Tang W.M., P5.023 Tanimoto M., P1.148 Tanimoto T., P5.111 Tanriverdi S., O4.056 Taran V.S., P1.061 Tarancón A., P1.035, P2.049, P5.135 Tardini G., O2.003, P4.039 Tartz M., P2.164 Tassi E., P2.179 Tassin V., I2.027 Tasso H., P2.057, P2.180 Tatarakis M., O4.056, P1.122, P2.148, P2.154 Tautz R., P4.136 Tavella F., P4.136 Taylor G., P1.108 TCV Team, 15.072, P2.036 *Teaca B.*, P1.188 Teliban I., P2.164 Temporal M., P5.125 Tendler M., P5.020 Teodorescu M., P2.167 Terasa C., P4.168 Terasaka K., P4.044, P5.158 Ter-Avetisyan S., P4.145 Terças H., P5.141 Terekhov A.V., P5.104 Tereshchenko M., P1.107 Tereshin V.I., P1.061, P2.170 Ter-Oganesyan A.E., P4.186 Terranova D., P2.054, P4.019, P4.074, Terry J.L., P1.005 Terzolo L., P5.025 Tessier Y., I1.014 Testa D., P1.067, P5.083 TEXTOR Team, O4.052, P1.081, P1.104, P4.016, P5.063 Thanasutives P., P4.015 Theiler C., I4.065, P1.184, P2.182 Theobald M., I2.027 Theobald W., I4.060, P2.127 Thessieux C., I2.027 Thiell G., 12.027 Thoen D.J., P1.081

Thomas A.G.R., O4.040, P4.144, P5.118 Thomas H.M., I5.079, O2.007, P2.159, P2.162, P5.136, P5.139, P5.140 Thomsen H., P1.065, P2.034, P2.113, P5.078 Thornton A.T., I2.036 Thornton L., P4.131 Throumoulopoulos G.N., P2.057, P2.180 Thyagaraja A., P1.023, P2.039, P4.037, P5.043, P5.052 Ticos C.M., O5.064, P1.169, P1.171 Tikhonchuk V.T., I2.027, I5.081, O2.013, O4.042, P1.119, P2.124, P2.140, P4.138, P4.149 Tilinin G.N., P1.110 Timberl J., P1.009 Timirkhanov R.A., P5.162 Timneanu N., P1.139 Timofeev I.V., P5.104 Timokhin V.M., P4.106 *Titov S.*, O5.066 TJ-II Team, 15.071 Tkachenko S.I., P2.137, P4.186 Todd T., 12.036 Todo Y., P1.056 Toi K., I2.022, P1.054, P1.056, P2.061, P2.107 Toigo V., P4.075 Tokar M., P1.011, P2.042, P4.048, P5.027 Tokarev V.I., O2.007 Tokuzawa T., I2.022, P1.054, P2.061, P5.017 Tolstvakov S.Yu., P1.110, P2.046, P2.097, P2.104, P2.108 Toncian T., P5.113 Toniolo C., P1.188, D4.003 Torrisi L., P2.142, P2.144, P4.154, P4.170 Toscano D., P1.170 Totsuji H., O5.063 Toussaint U.v., P1.065 Town R.P.J., P2.127, D5.001 Traisnel E., P1.058, D4.004 Tran T.M., P1.019, P4.033 Trapeznikov A., P1.008 Treutterer W., P4.082 Tribaldos V., P2.090, P2.113 Tribeche M., P1.153 Trier E., P1.022 Trigger S.A., P1.158 Trines R., I4.066 Trines R.M.G.M., P1.128 Tritz K., P1.059 Tronnier A., P2.132 Trottenberg T., P2.164 Trubchaninov S.A., P2.170 Truhachev F.M., P4.188 Trulsen J., P5.132 Trunev Yu.A., P4.103, P5.098 Tsakiris G., I1.002, O3.019, P1.131, P1.134, P1.145 Tsalas M., P2.010 Tsikata S., P4.189 Tsintsadze N.L., P5.167

Tsironis C., P5.089, P5.093 Tskhakava sr. D.D., P2.005 Tsohantjis I., O4.041, P1.123 Tsuchiya H., P5.003 Tsuiii N., P5.100 Tsung F.S., O3.021 Tsushima A., P5.133 Tsventoukh M.M., P4.012, P4.057 Tsybenko S.A., P1.061 Tsyganov D., P2.169 Tsytovich V.N., O2.009, P1.154, P5.131 Tudisco O., P2.026, P4.032 Tugarinov S., P1.008 Tukachinsky A.S., P1.080, P2.093, P2.103 Tumakaev G.K., P1.152 Turan R., P1.127 Turco F., P1.058 Turkin Yu. A., P2.113 Turnyanskiy M.R., P5.081, P5.084 Turri G., 15.072, P2.020 Turtikov V.I., P2.145 Tynan G.R., I4.065, P5.158 Tzianaki E., P1.122, P2.148, P2.154 Tzoufras M., O3.021 Udintsev V., I5.072 Ullschmied J., I5.081, P1.117, P1.118, P4.133 Ulmer J.L., I2.027 Umansky M.V., P4.001 Unterberg B., O4.052, P1.104, P2.009, P4.016, P4.075 Unterberg E.A., P2.013 Urban J., P2.096, P2.098 Urso L., P2.067 Uschmann I., O5.061, P2.129 Ushakov A.G., P2.134 Ushanov V.Zh., P1.010 Ustimenko A.B., O2.018, P1.010, P5.148 Utkin A.V., P2.145 Uzdensky D.A., O5.066 Vaessen B.C.E., P1.081 Vafin I.Yu., P5.071 Vaivads A., I4.066 Vajnov P.V., P4.043 Valdettaro L., P4.026 Valeo E.J., P1.090, P1.108, P2.099, P4.114 Valisa M., I3.045, O4.029, P4.074, P5.073 Valougeorgis D., P5.033 Valovic M., O4.054, P2.098 Van Compernolle B., P2.105 Van de Pol M.J., P1.090 Van den Berg M.A., P1.081 Van der Geer S.B., P1.148 Van der Meiden H.J., P4.093 Van der Mullen J., I2.039 Van Dijk J., I2.039 Van Milligen B.Ph., P1.031, P2.021, P2.039, P2.043 Van Oost G., P1.021, P2.040

Van Rooij G.J., P4.093 Van Schoor M., O4.052, P4.013 Van Wassenhove G., P1.079, P1.104, P5.077 Van Zeeland M.A., P2.003, P4.083, P5.099 Vanhaelen O., D4.003 Vann R.G.L., P1.007, P4.064 Varfolomeev V.I., P1.110, P2.108 Vargas V.I., P2.030, P5.018 Varischetti M.C., P4.025, P4.026 Varnière P., P4.190 Vasiliev M.M., P1.160, P1.161 Vasiliev M.N., P1.187 Vatistas G., I4.064 Vatulin V.V., P2.146, P2.149 Vaulina O.S., I2.033, P4.158, P5.137 *Vchivkov K.V.*, P1.192 Vdovin V., P1.102 Vecchi G., P2.105 Vega J., P2.113 Veisz L., P4.136, P4.146 Vejpravova Poltierova J., P1.162 Vekshina E.O., P2.087, P4.043 Velarde M., P2.135 Velarde P., O5.062, P1.117, P1.132, P1.141, P2.133 Velasco J.L., P1.035, P2.049, P5.135 Veltcheva M., P4.129, P5.109 Veltri P., P1.039 Velyhan A., P2.120, P4.133 Venkatakrishnan N., P4.129 Veres G., P2.111 Vergote M., O4.052 Vermare L., P1.017, P1.044, P4.021 Vervier M., P1.104, P5.077 Verwichte E., P1.030, P2.055 Vesel A., P1.014, P1.166 Vianello N., 04.029, 04.049 Vichev I.Yu., P1.125 Victoria M., P2.135 Vid'junas M.I., P1.080 Videau L., 12.027 Vieira J., P4.143, P4.147, P4.150 Vierle T., P4.075 Vieux G., P1.150 Vikherv V.V., P2.148, P2.154 Vildjunas M.I., P2.093, P2.103 Villar T., P2.135 Villard L., P1.019, P1.072, P2.063, P4.033 Villegas D., O4.050 Villette B., I2.027 Villone F., P2.067, P2.080, P4.073, P5.047 Vincena S., P1.190 Vinci T., P5.119 Vinogradov P.V., O2.007 Vinogradov V.I., P1.120 Vlachos N.S., P2.044 Vlad G., P5.028, P5.055

Vladimirov S.V., O3.023, P1.154, P1.155, P1.156, P1.157, P1.163, P2.157, P5.132 Vlahos L., P2.041, P5.089, P5.093 Vohrer U., I1.012 Voitsekhovitch I., O2.006, P2.098 Volkov E.D., P1.061 Volkov G.I., P2.131, P2.136 Volkov G.S., P1.125 Volpe D., P5.088 Volpe F., P5.095 Vomvoridis J.L., P4.105 Von Hellermann M.G., P4.092 Von Oertzen W., P4.122 Vorberger J., P2.152 Vorgul I., I3.053, P2.186, P4.179, P4.185 Vorona N.A., P1.187 Voronin A.V., P2.104, P2.108 Voronov G.S., P2.188 Voskobovnikov S., P4.035 Voslion T., P2.072 Vranjes J., P4.178, P5.040, P5.061 Vrba P., P1.143 *Vrbova M.*, P1.143 Vulkay I., P1.170 Vulliez K., P5.088 Vyacheslavov L.N., P4.103, P5.098 Wadati M., P4.164 Wade M.R., P2.073 Waelbroeck F.L., P2.006 Wagenaars E., I2.039 Wagner D., P1.034, P2.111 Wagner F., P1.043, P1.088 Wahlström C.-G., P4.134 Waldmann O., P5.002 Walker C., O2.001 *Wallace G.M.*, P4.111 Walsh M., 04.054 Waltz R.E., 04.053, P1.017, P1.044, P5.028 Wan B.N., P4.102 Wang Cheng, P1.121 Wang D.X., P4.102 Wang F.L., 15.082 Wang M., P4.102 Wang M.W., P5.086, D2.005 Wang S.J., P5.123, P5.124 Wang W.M., P5.124 Wang W.X., P5.016, P5.023 Wang X.M., P4.102 Wang X.Y., P5.086, D2.005 Wang Z., 05.064 Wang Z.H., P5.123, P5.124 Watanabe F., P1.054, P2.061 Watanabe K.Y., I2.022, P1.054, P2.061, P2.095, P2.113 Watkins J.G., P4.003 Wattieaux G., I1.014 Waugh J., I3.054, O5.061

Waugh J.N., P2.187 Weber J.W., P4.005 Weber S., O2.013, O4.042, P2.118, P2.140 Wei H.G., P1.140 Wei M., P5.114 Wei Z.Y., P5.123, P5.124 Weiland J., P1.048, P2.032, P2.036, P2.042, P4.024, P4.036 Weingartner R., P4.143, P4.146 Welander A.S., P2.079, P4.055 Weller A., P1.065, P2.113, P4.072, P5.078 Weltmann K.-D., P4.173 Wenninger R., P1.101 Werner A., P2.034, P2.051, P2.113, P4.072, P5.078 Wesley J.C., P2.003 West W.P., P2.003, P2.073 Westerhof E., P1.081, P5.077 Weynants R.R., O4.052, P4.013 Weyssow B., P1.188, P4.031, P4.048, D4.003 White A.E., P5.099 White R.B., P5.099 Whiteford A., D1.003 Whittaker D.S., P1.132 Whyte C.G., I3.053 Whyte C.G., P2.186 Whyte D., P2.081 Wieggers R.C., P4.009 Wiesen S., P5.053, D1.003 Wilgen J.B., P1.108 Willi O., P1.089, P5.113 Willingale L., O3.021, O4.040, P4.144, P5.108, P5.116 Wilson H.R., I2.020, P1.007, P4.029, P4.051 Wilson J.R., P1.108, P2.099, P4.111 Wilson L.A., P2.187 Wilson P.A., P5.113 Windridge M.J., P4.066 Wischmeier M., P2.010, P4.003 Wisse M., P2.018, P2.088 Wojda F., P4.134 Wolf R.C., P1.079, P2.113, P5.078 Wolfe S., P1.005 Wolfrum E., O2.002, O4.032, P2.010, P2.083, P4.010 Wolowski J., O4.043, P1.127, P4.123 Wolter M., P2.165, P4.168 Woo H.-J., P4.090, P4.091 Woolsey N.C., I3.054, I5.082, O5.061, P2.129, P2.187 Wortman P.M., P1.081 Woskov P., P1.034, P5.077 Wright G., P2.081 Wright J.C., P1.108, P2.099, P4.111, P4.114, P5.085 Wrobel R., I2.027, O2.013 Wu B., P2.076, P4.112 Wu H.-C., P1.133, P1.146 Wu J., D5.004 Wu W., P2.003 Wukitch S.J., P5.085, P5.100 Wünderlich D., P2.102

Wurden G.A., O5.064 Wyman M.D., P1.075 Xiao W.W., D5.003 Xiaoa W.W., D4.004 Xie W.M., P5.101 Xu M., I4.065 Xu M.H., P5.123, P5.124 Xu Y., O4.052, P1.089, P4.013 Xu Zhizhan, P1.121 Xuan W.M., P5.086, D2.005 Yaakobi B., I4.060 Yabu-uchi T., P5.111 Yadikin D., P2.066, P4.075 Yagi M., P4.044, P5.059, P5.158 Yakovenko Yu.V., P4.072 Yakubov V.B., P1.115, P1.116 Yamada H., I2.022, P1.076, P2.113, P5.003 Yamada I., I2.022, P2.061, P5.017 Yamada T., P4.044, P5.158 Yamaguchi N., P2.082 Yamamoto S., P1.054 Yamashita T., P4.067, P4.068 Yan L.W., P2.014, D5.003 Yan Z., I4.065 Yanenko V.V., P2.130 Yang J.F., P5.086, D2.005 Yang J.X., P5.086, D2.005 Yang Q., P5.026 Yang Q.W., P5.101, D5.003 Yang X., P1.150 Yao L.H., D5.003 Yao L.Y., P5.086, D2.005 Yaroshenko V.V., P5.140 Yashin A.Yu., P2.093 Yatsuka E., P4.109 Yavorskii V., P1.087 Ye J., D5.004 Ye M.Y., P5.078 Yegorenkov V., P4.176 Yerci S., P1.127 Yin L., P4.130 Yokota M., P4.101 Yokoyama M., P2.113 Yoneda Y., P1.085 Yong Liu, D5.003 Yoo S.J., O3.024, P4.175 Yoon S.W., P5.091 Yordanova E., O4.057 Yoshikawa M., P1.085 Yoshimura Y., P1.056, P4.101 Yoshino R., P2.075 Yu J.H., I4.065, P2.003, P4.083, P4.098 Yu L.M., P5.086, D2.005 Yu Q., P1.078, P2.064 Yu Q.Z., P5.124 Yuan B.S., P5.101

Yuan X.H., P5.124 Yuh H., P1.108, P5.022, P5.060 Yun E. Y., P4.171 Zabiralov A.A., P2.136 Zaboronkova T.M., P4.192 Žácek F., P2.098 Zaitsev F.S., P1.091, P1.092, P1.093 Zaitsev V.I., P1.125 Zajac J., P2.096 Zakharov L.E., P4.058, P4.069 Zakharov Yu.P., P1.142, P1.192 Zamponi F., 05.061 Zanca P., O4.029, P5.065 Zappa F., P5.007 Zarnstorff M., P5.058 Zarnstorff M.C., P2.013, P5.050 Zaroschi V., P1.171 Zastrow K.D., P4.022, P4.094, P4.115 Zebrowski J., P5.075 Zedda M.K., P4.070, P5.045 Zeitoun Ph., P1.132, P1.141 Zelenin A., P2.137 Zenkevich P.R., O2.012 Zepf M., I5.077, O3.019, P1.131, P1.134, P5.103, P5.108, P5.116 Zerbini M., P5.074 Zhang G.Q., P5.086, D2.005 Zhang J., 15.082, P5.123, P5.124 Zhang L.Z., P4.102 Zhang Q., 13.052 Zhang T., P5.024 Zhang W.L., P5.028 Zhang X.D., P4.102, P5.024 Zhang X.M., P5.086, D2.005 Zhang Y., P5.123 Zhang Z., P5.123 Zhao G., 15.082 Zhao H.L., P2.014 Zhao K.J., P2.014 Zhao Y.P., P4.101, P4.102 Zhdanov S.K., I5.080, P2.159, P5.139 Zheng Z.Y., P5.124 Zhezhera A., P1.088 Zhidkov N.V., P2.149 Zhilin E.G., P1.110 Zhogolev V.E., P2.077 Zhong G.W., P5.086, D2.005 Zhou C.D., I4.060 Zhou H.Y., P2.082 Zhou J., P5.101 Zhou W.M., D2.003 Zhou Y., P5.026, D5.003 Zhu P.F., P5.123 Zhubr N.A., P1.080, P2.103 Zimbardo G., P5.170 Zimmermann O., O2.006

Zivkovic T., P1.037 Zobdeh P., P4.140 Zohm H., P1.055, P1.062, P1.101, P2.066, P2.067 Zoletnik S., O4.031, P2.034, P5.076, P5.078, P5.079 Zolototrubova M.I., P1.061 Zonca F., P1.051, P2.038, P4.054, P4.062, P5.028, P5.055, P5.056 Zou G.Q., P5.086, D2.005 Zou X.L., D4.004 Zoua X.L., D5.003 Zubairov Ed.R., P4.103, P5.098 Zuin M., I1.017, O4.029, O4.049 Zurro B., P1.094, P2.090, P2.094 Zushi H., P5.003 Zwingmann W., P1.064, P2.112

- 184 -